Neural bridge sampling for evaluating safety-critical
autonomous systems

NeurlPS 2020
Aman Sinha*, Matthew O’Kelly*, Russ Tedrake, & John Duchi




Testing safety-critical systems

* As ML moves into safety-critical systems, we need to rigorously evaluate safety

* We need to verify systems are 99.99999999% reliable
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Current methods are dangerous, slow, and/or expensive



Governing problem

» Given: Base distribution of behavior X ~ B (with density pg) and a simulator
» Given: Objective function (i.e. safety metric) f : X — R
» Goal: probability of dangerous event p., := Po(f(X) < )

* Naive methods are too slow for small probabillities
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Monte Carlo estimate Error of Monte Carlo estimate



Our approach

* A |ladder towards failure

pi(x) := po(x) exp (=B [f(z) —7],)

exponential barrier

Threshold for dangerous events
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Our approach

* A ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling
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* A |ladder towards failure

« Exploit: determine the next 5 using current samples (kth distribution)
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Use both sets of samples to

compute an accurate estimate
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Use an auxiliary “bridge”

distribution
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Error grows with distance between
distributions, so we “warp” them

&

normalizing flow

[Hoffman et al. 2019, Papamakarios et al. 2019]



Our approach

* A smoother ladder towards failure
» Exploit: determine the next 5 using current samples (kth distribution)
* Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution

» Estimate: compute 7., /7 via bridge sampling
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Performance guarantees
1
p~ log(p )~

* QOverall efficiency gain of O ( ) over Monte Carlo

* Relative advantage scales with rarity

Cost Error
Neural bridge sampling N log(l/pv) lOg(]l\f/pW)
1
Monte Carlo N pWN




Experiments

Formally-verified neural
network for MountainCar

able 1: Relative mean-square error

Compare two designs for vertical
landing of an orbital-class rocket
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Compare two SOTA methods
for CarRacing

(D~ /Dy — 1)2] over 10 trials

Our approach (NB)
outperforms other methods

Synthetic MountainCar Rocket1 Rocket2 AttentionAgentRacer WorldModelRacer
MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS 0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218
D~y 3.6-107° 1.6-107° 23.107°> 24-107%* ~25-107° ~9.5-10°




