Neural bridge sampling for evaluating safety-critical autonomous systems

NeurIPS 2020 Aman Sinha*, Matthew O'Kelly*, Russ Tedrake, & John Duchi

Testing safety-critical systems

• As ML moves into safety-critical systems, we need to rigorously evaluate safety

We need to verify systems are 99.99999999% reliable

Current methods are dangerous, slow, and/or expensive

Governing problem

• Given: Base distribution of behavior $X \sim P_0$ (with density ρ_0) and a simulator

- Given: Objective function (i.e. safety metric) $f: \mathcal{X} \to \mathbb{R}$
- Goal: probability of dangerous event $\,p_{\gamma}:=\mathbb{P}_0(f(X)<\gamma)\,$
- Naive methods are too slow for small probabilities

$$\hat{p}_{\gamma} = \frac{1}{N} \sum_{i=1}^{N} I\{f(x_i) < \gamma\} \qquad \mathbb{E}[(\hat{p}_{\gamma}/p_{\gamma} - 1)^2] = \frac{1 - p_{\gamma}}{Np_{\gamma}}$$

Monte Carlo estimate

Error of Monte Carlo estimate

A ladder towards failure

$$\rho_k(x) := \rho_0(x) \exp\left(-\beta_k \left[f(x) - \gamma\right]_+\right)$$
exponential barrier

A ladder towards failure

$$P_0 = \mathcal{N}(0, I)$$

A ladder towards failure

$$P_0 = \mathcal{N}(0, I)$$

$$f(x) = -\min(x_{[i]})$$

$$\gamma = -6$$

- A ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

- A ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

Choose β_{k+1} such that

$$\frac{Z_{k+1}}{Z_k} \approx \alpha$$

(binary search)

- A ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

Automatic tradeoff between exploration and optimization

$$\nabla \log \rho_k(x) = \underbrace{\nabla \log \rho_0(x)}_{\text{exploration}}$$

$$- \underbrace{\beta_k \nabla f(x) I\{f(x) > \gamma\}}_{\text{optimization}}$$

- A ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

Use both sets of samples to compute an accurate estimate of Z_{k+1}/Z_k

distribution

Error grows with distance between distributions, so we "warp" them

[Hoffman et al. 2019, Papamakarios et al. 2019]

- A smoother ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

- A smoother ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

- A smoother ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

- A smoother ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

- A smoother ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

- A smoother ladder towards failure
- Exploit: determine the next β using current samples (kth distribution)
- Explore + optimize: utilize gradient-based MCMC to sample from (k+1)st distribution
- Estimate: compute Z_{k+1}/Z_k via bridge sampling

Performance guarantees

• Overall efficiency gain of $O\left(\frac{1}{p_{\gamma}\log(p_{\gamma})^2}\right)$ over Monte Carlo

Relative advantage scales with rarity

	Cost	Error	
Neural bridge sampling	$N\log(1/p_{\gamma})$	$rac{\log(1/p_{\gamma})}{N}$	
Monte Carlo	N	$\sqrt{rac{1}{p_{m{\gamma}}N}}$	

Experiments

Formally-verified neural network for MountainCar

Compare two designs for vertical landing of an orbital-class rocket

Compare two SOTA methods for CarRacing

Table 1: Relative mean-square error $\mathbb{E}[(\hat{p}_{\gamma}/p_{\gamma}-1)^2]$ over 10 trials

	Synthetic	MountainCar	Rocket1	Rocket2	AttentionAgentRacer	WorldModelRacer
MC	1.1821	0.2410	1.1039	0.0865	1.0866	0.9508
AMS	0.0162	0.5424	0.0325	0.0151	1.0211	0.8177
В	0.0514	0.3856	0.0129	0.0323	0.9030	0.7837
NB	0.0051	0.0945	0.0102	0.0078	0.2285	0.1218
p_{γ}	$3.6 \cdot 10^{-6}$	$1.6 \cdot 10^{-5}$	$2.3\cdot 10^{-5}$	$2.4\cdot 10^{-4}$	$\approx 2.5 \cdot 10^{-5}$	$\approx 9.5 \cdot 10^{-6}$

Our approach (NB) outperforms other methods