Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems

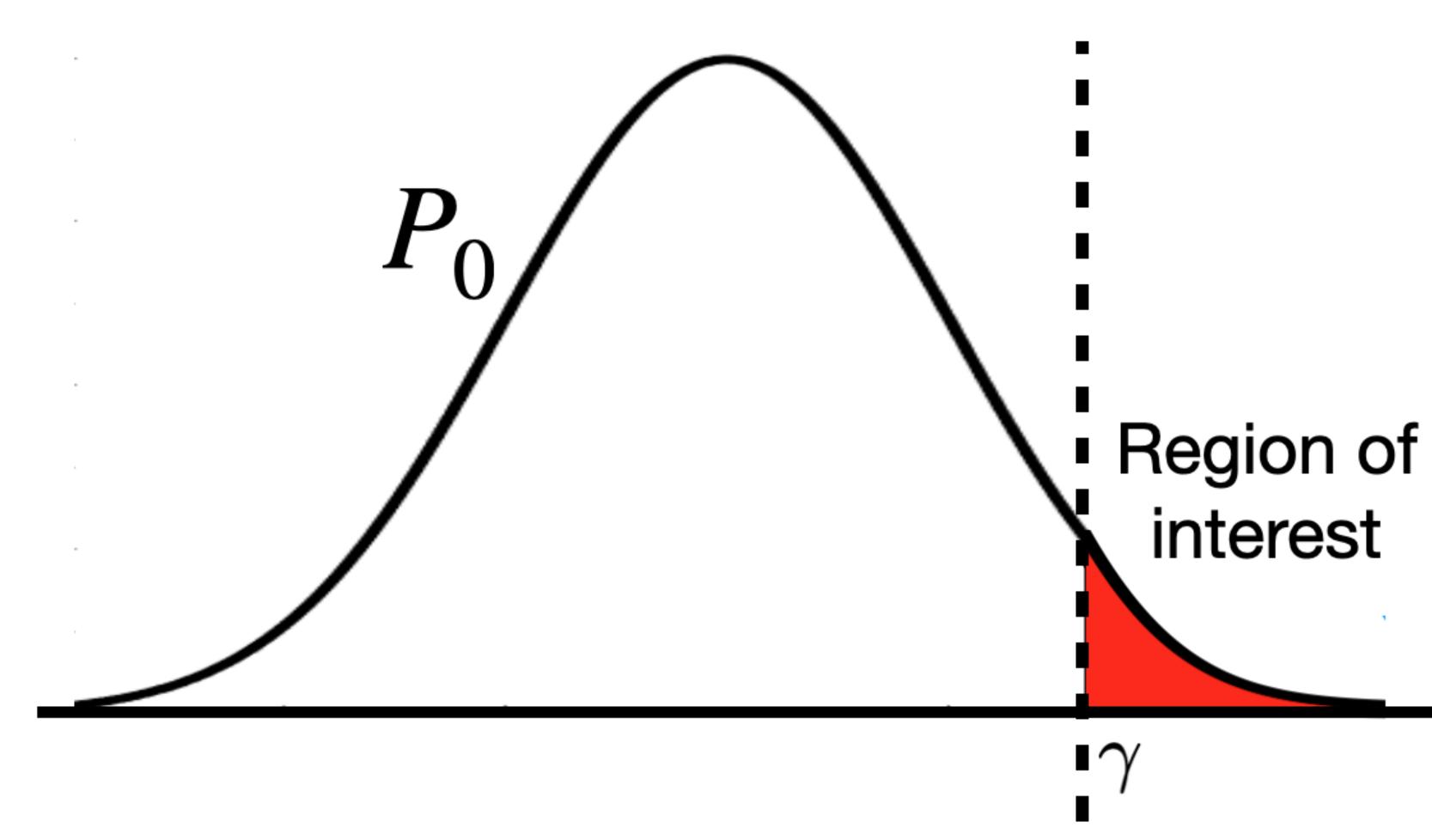
Aman Sinha*, Matthew O'Kelly*, Russ Tedrake, & John Duchi Stanford University, University of Pennsylvania, MIT amans@stanford.edu, mokelly@seas.upenn.edu, russt@mit.edu, jduchi@stanford.edu

Introduction

- Real-world testing of safety-critical systems is expensive and dangerous
- Formal verification of "correctness" is intractable and subjective
- We consider a **risk-based framework**: we evaluate the probability of failures under a generative model of situations that can be evalauted in simulation
- We create a novel rare-event simulation techniques that combines exploration, exploitation, and optimization techniques to efficiently find the probability of failures
- We empirically demonstrate the superiority over competing techniques in several real-world applications:
- sensitivity of a formally-verified system to domain shift
- design optimization for high-precision rockets
- model comparisons for two learning-based approaches to autonomous navigation.

Governing problem: failure probability

- Given: continuous measure of safety $f : \mathcal{X} \to \mathbb{R}$, threshold level γ , and distribution P_0 of the environment with density rho_0
- Goal: Evaluate probability of bad events $p_{\gamma} := \mathbb{P}_0(f(X) < \gamma)$
- Naive Monte Carlo sampling is too slow for good algorithms / small p_{γ} : relative variance of estimate $\propto 1/p_{\gamma}$



Approach

non-rare probabilites via intermediate distributions ρ_k

$$\rho_k(x) := \rho_0(x) \exp\left(-\beta_k \left[f(x) - \gamma\right]_+\right),$$
exponential barrier
 $Z_k := \int_{\mathcal{X}} \rho_k(x) dx$

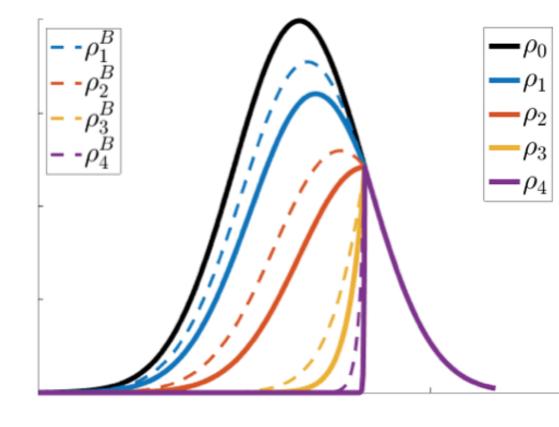
$$p_{\gamma} := \mathbb{P}_0(f(X) \le \gamma) = \mathbb{E}_{P_K} \left[\frac{Z_K \mu}{Z_0 \mu} \right]$$

Algorithm

- **Exploit**: Determine the next β_{k+1} using samples from the k^{th} distribution - Efficient optimization problem solved via binary search
- **Explore** + optimize: Use a gradient-based based MCMC technique (Hamiltonian Monte Carlo) to sample from the updated distribution
- Gradients of the intermediate densities automatically trade off between exploration and optimization

$$7\log\rho_k(x) = \underbrace{\nabla\log\rho_0(x)}_{k \to i} - \underbrace{\beta_k \nabla f(x) I\left\{f(x) > \gamma\right\}}_{i \to i}$$

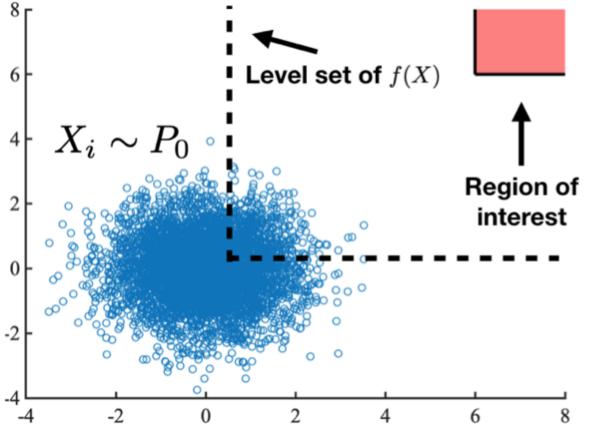
- **Estimate**: Estimate Z_{k+1}/Z_k via bridge sampling
- so use normalizing flows to "warp" the space between them
- Use samples form P_k and P_{k+1} to build an auxiliary "bridge distribution" - Error of bridge-sampling estimate grows with distance between P_k and P_{k+1}

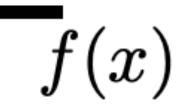


Bridge distributions

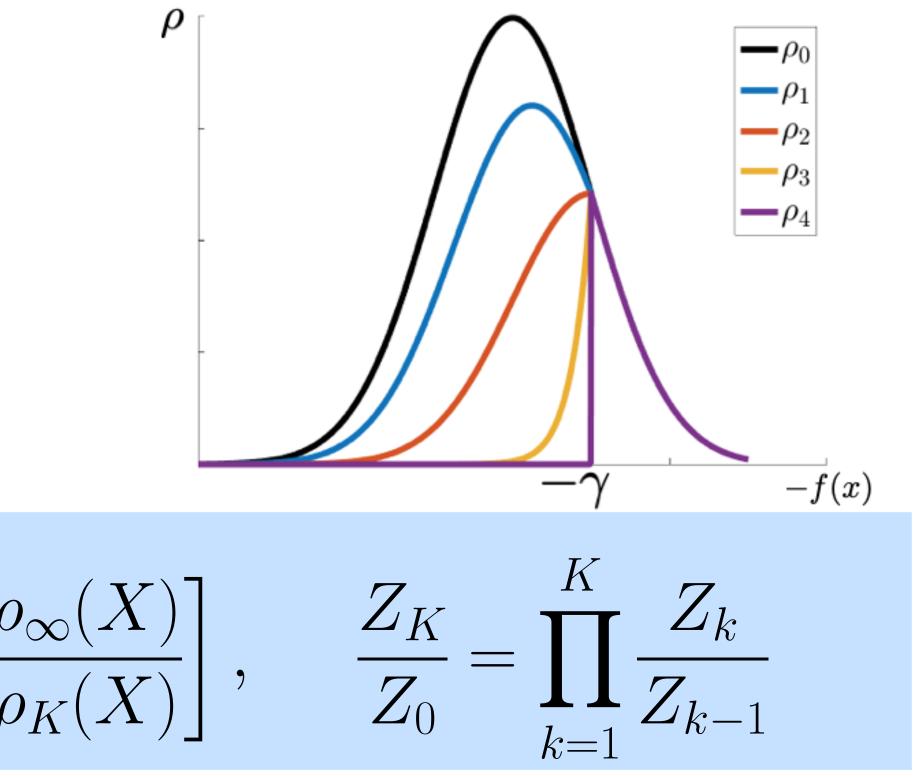
Example

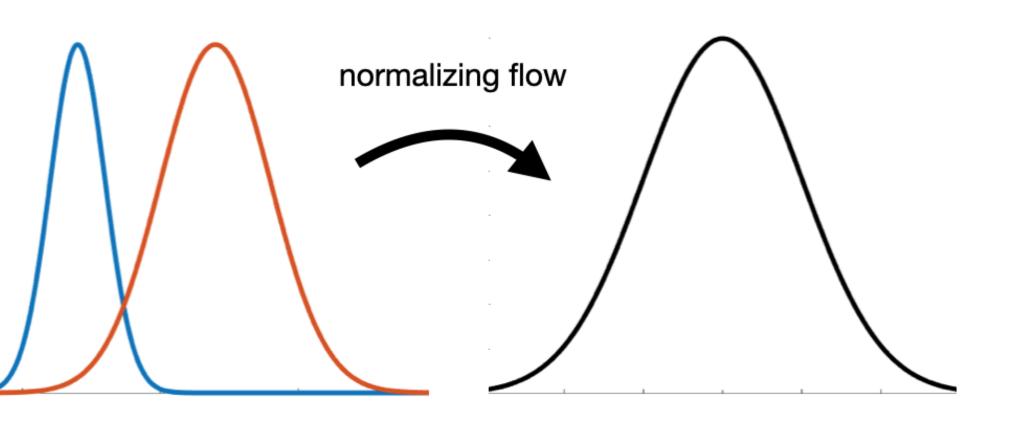
• $P_0 = \mathcal{N}(0, I), \ f(x) = -\min(x_{[i]}), \ \gamma = -6$



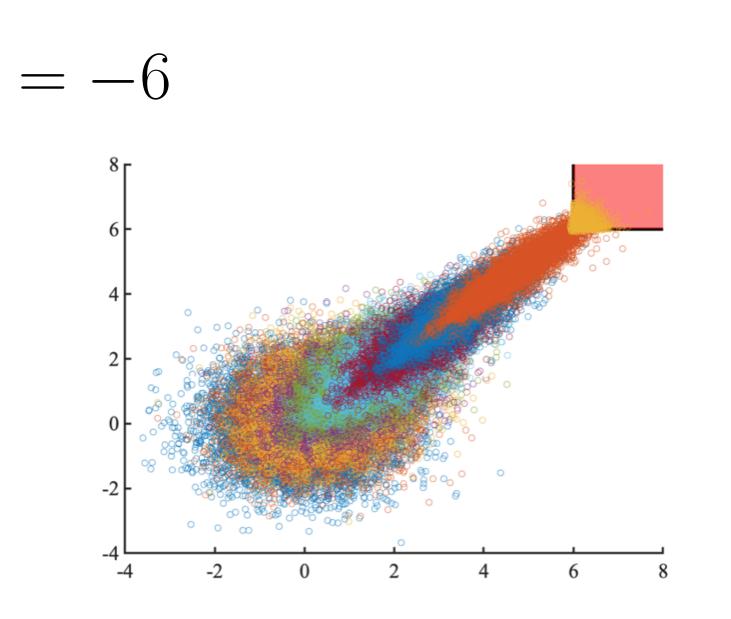


• Build a ladder towards failure: decompose small probability into a sequence of





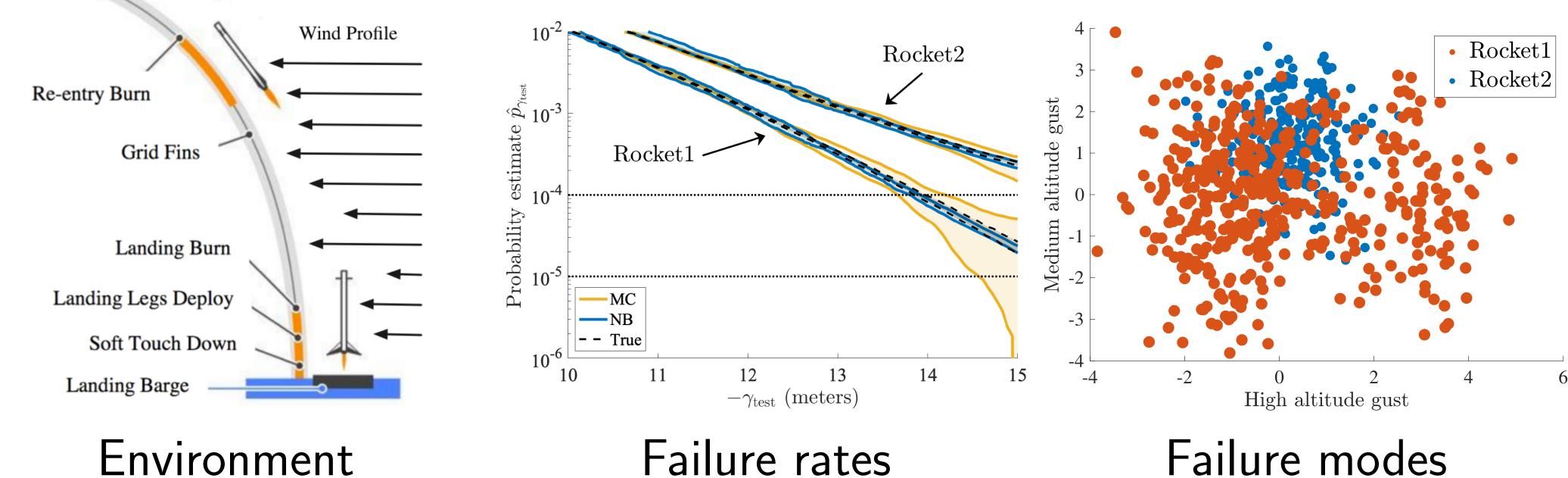
Neural warping



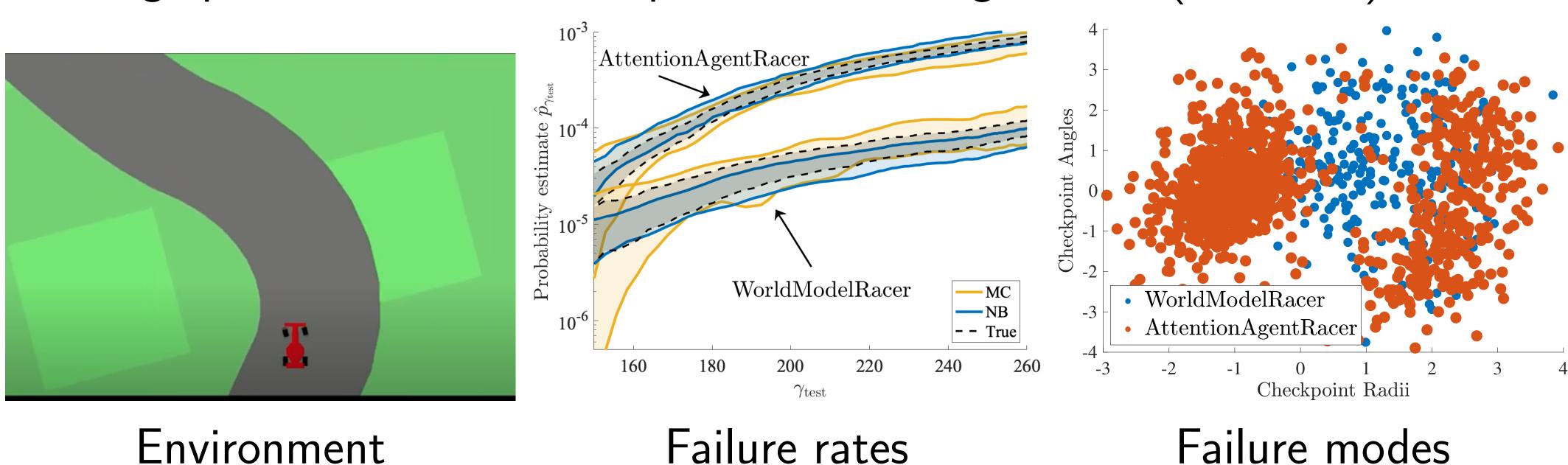
Performance guarantees

- Relative advantage scales with rarity

Experiments **Rocket landing**

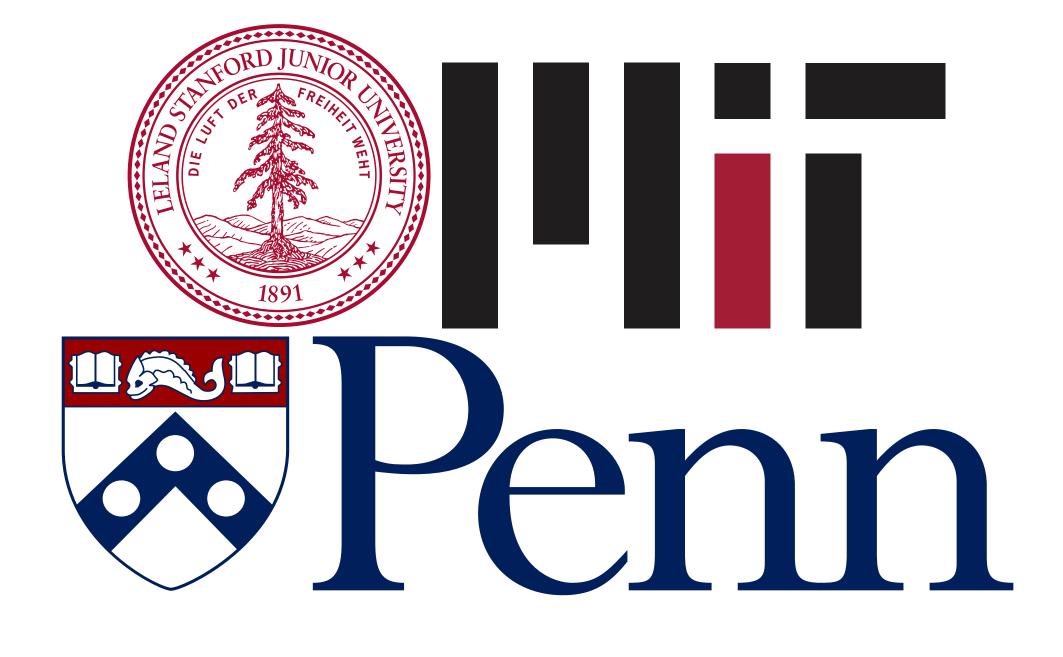


Environment CarRacing



Environment Quantitative comparisons

	Synthetic	MountainCar	Rocket1	Rocket2	AttentionAgentRacer	WorldModelRacer
MC	1.1821	0.2410	1.1039	0.0865	1.0866	0.9508
AMS	5 0.0162	0.5424	0.0325	0.0151	1.0211	0.8177
В	0.0514	0.3856	0.0129	0.0323	0.9030	0.7837
NB	0.0051	0.0945	0.0102	0.0078	0.2285	0.1218
p_{γ}	$3.6 \cdot 10^{-6}$	$1.6 \cdot 10^{-5}$	$2.3 \cdot 10^{-5}$	$2.4 \cdot 10^{-4}$	$\approx 2.5 \cdot 10^{-5}$	$\approx 9.5 \cdot 10^{-6}$



• **Theorem**: overall efficiency gain of $O\left(\frac{1}{p_{\gamma}\log(p_{\gamma})^2}\right)$ over naive Monte Carlo

• Comparing 2 engine designs for vertical landing of an orbital-class rocket • P_0 models the wind gusts throughout the rocket's flight, f(x) measures distance from landing pad's center at touchdown

 Comparing 2 SOTA policies on the Open Gym CarRacing environment • P_0 models the racetrack geometry, f(x) measures lap score • Average performance for the 2 policies is indistiguishable (900 ± 50)

• Our approach (NB) outperforms Monte Carlo and other similar techniques • We achieve tighter estimates of risk for the same number of samples.

Relative mean-square error $\mathbb{E}[(\hat{p}_{\gamma}/p_{\gamma}-1)^2]$ over 10 trials