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Introduction

• Real-world testing of safety-critical systems is expensive and dangerous

• Formal verification of “correctness” is intractable and subjective

• We consider a risk-based framework: we evaluate the probability of failures
under a generative model of situations that can be evalauted in simulation

• We create a novel rare-event simulation techniques that combines explo-
ration, exploitation, and optimization techniques to e�ciently find the
probability of failures

• We empirically demonstrate the superiority over competing techniques in sev-
eral real-world applications:

– sensitivity of a formally-verified system to domain shift

– design optimization for high-precision rockets

– model comparisons for two learning-based approaches to autonomous naviga-
tion.

Governing problem: failure probability

• Given: continuous measure of safety f : X ! R, threshold level �, and
distribution P0 of the environment with density rho0

• Goal: Evaluate probability of bad events p� := P0(f (X) < �)

• Naive Monte Carlo sampling is too slow for good algorithms / small p�: relative
variance of estimate / 1/p�

Approach
• Build a ladder towards failure: decompose small probability into a sequence of
non-rare probabilites via intermediate distributions ⇢k
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Algorithm
• Exploit: Determine the next �k+1 using samples from the kth distribution

– E�cient optimization problem solved via binary search

• Explore + optimize: Use a gradient-based based MCMC technique (Hamil-
tonian Monte Carlo) to sample from the updated distribution

– Gradients of the intermediate densities automatically trade o↵ between ex-
ploration and optimization

r log ⇢k(x) = r log ⇢0(x)| {z }
exploration

� �krf (x)I {f (x) > �}| {z }
optimization

• Estimate: Estimate Zk+1/Zk via bridge sampling

– Use samples form Pk and Pk+1 to build an auxiliary “bridge distribution”
– Error of bridge-sampling estimate grows with distance between Pk and Pk+1

so use normalizing flows to “warp” the space between them

Bridge distributions Neural warping

Example
• P0 = N (0, I), f (x) = �min(x[i]), � = �6

Performance guarantees

• Theorem: overall e�ciency gain of O
⇣

1
p� log(p�)2

⌘
over naive Monte Carlo

• Relative advantage scales with rarity

Experiments
Rocket landing
• Comparing 2 engine designs for vertical landing of an orbital-class rocket

• P0 models the wind gusts throughout the rocket’s flight, f (x) measures dis-
tance from landing pad’s center at touchdown
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CarRacing
• Comparing 2 SOTA policies on the Open Gym CarRacing environment

• P0 models the racetrack geometry, f (x) measures lap score

• Average performance for the 2 policies is indistiguishable (900± 50)
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Quantitative comparisons
• Our approach (NB) outperforms Monte Carlo and other similar techniques

• We achieve tighter estimates of risk for the same number of samples.

Relative mean-square error E[(p̂�/p� � 1)2] over 10 trials
Synthetic MountainCar Rocket1 Rocket2 AttentionAgentRacer WorldModelRacer

MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS 0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218

p� 3.6 · 10�6 1.6 · 10�5 2.3 · 10�5 2.4 · 10�4 ⇡ 2.5 · 10�5 ⇡ 9.5 · 10�6


