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Abstract

Learning-based methodologies increasingly find applications in safety-critical do-
mains like autonomous driving and medical robotics. Due to the rare nature of
dangerous events, real-world testing is prohibitively expensive and unscalable. In
this work, we employ a probabilistic approach to safety evaluation in simulation,
where we are concerned with computing the probability of dangerous events. We
develop a novel rare-event simulation method that combines exploration, exploita-
tion, and optimization techniques to find failure modes and estimate their rate of
occurrence. We provide rigorous guarantees for the performance of our method
in terms of both statistical and computational efficiency. Finally, we demonstrate
the efficacy of our approach on a variety of scenarios, illustrating its usefulness
as a tool for rapid sensitivity analysis and model comparison that are essential to
developing and testing safety-critical autonomous systems.

1 Introduction

Data-driven and learning-based approaches have the potential to enable robots and autonomous
systems that intelligently interact with unstructured environments. Unfortunately, evaluating the
performance of the closed-loop system is challenging, limiting the success of such methods in safety-
critical settings. Even if we produce a deep reinforcement learning agent better than a human at
driving, flying a plane, or performing surgery, we have no tractable way to certify the system’s quality.
Thus, currently deployed safety-critical autonomous systems are limited to structured environments
that allow mechanisms such as PID control, simple verifiable protocols, or convex optimization to
enable guarantees for properties like stability, consensus, or recursive feasibility (see e.g. [33, 69, 14]).
The stylized settings of these problems and the limited expressivity of guaranteeable properties are
barriers to solving unstructured, real-world tasks such as autonomous navigation, locomotion, and
manipulation.

The goal of this paper is to efficiently evaluate complex systems that lack safety guarantees and/or
operate in unstructured environments. We assume access to a simulator to test the system’s perfor-
mance. Given a distribution X ~ P of simulation parameters that describe typical environments for
the system under test, our governing problem is to estimate the probability of an adverse event

Py =Po(f(X) < ). (M
The parameter +y is a threshold defining an adverse event, and f : X — R measures the safety of a
realization z of the agent and environment (higher values are safer). In this work, we assume F is
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known; the system-identification and generative-modeling literatures (e.g. [6, 82]) provide several
approaches to learn or specify Fy. A major challenge for solving problem (1) is that the better an
agent is at performing a task (i.e. the smaller p, is), the harder it is to confidently estimate p,—one
rarely observes events with f(z) < ~. For example, when P is light-tailed, the sample complexity
of estimating p., using naive Monte Carlo samples grows exponentially [19].

Problem (1) is often solved in practice by naive Monte Carlo estimation methods, the simplest of
which explore the search space via random samples from Fy. These methods are unbiased and
easy to parallelize, but they exhibit poor sample complexity. Naive Monte Carlo can be improved
by adding an adaptive component exploiting the most informative portions of random samples
drawn from a sequence of approximating distributions Py, P, ..., Px. However, standard adaptive
Monte Carlo methods (e.g. [20]), though they may use first-order information on the distributions Py,
themselves, fail to use first-order information about f to improve sampling; we explicitly leverage
this to accelerate convergence of the estimate through optimization.

Naive applications of first-order optimization methods in the estimation problem (1)—for example
biasing a sample in the direction —V f(z) to decrease f(x)—also require second-order information
to correct for the distortion of measure that such transformations induce. Consider the change of
variables formula for distributions p(y) = p(g~'(y)) - | det J,-1(y)| where y = g(z). When g(z) is
a function of the gradient V f(x), the volume distortion | det .J,-1 (y)| is a function of the Hessian
V2f(x). Hessian computation, if even defined, is unacceptably expensive for high-dimensional
spaces X’ and/or simulations that involve the time-evolution of a dynamical system; our approach
avoids any Hessian computation. In contrast, gradients V f () can be efficiently computed for many
closed-loop systems [1, 80, 107, 59] or through the use of surrogate methods [105, 28, 36, 8].

To that end, we propose neural bridge sampling, a technique that combines exploration, exploitation,
and optimization to efficiently solve the estimation problem (1). Specifically, we consider a novel
Markov-chain Monte Carlo (MCMC) scheme that moves along an adaptive ladder of intermediate
distributions P}, (with corresponding unnormalized densities py,(z) and normalizing constants Zj, :=
J + Pr(z)dx). This MCMC scheme iteratively transforms the base distribution F to the distribution
of interest PoI{f(x) < ~}. Neural bridge sampling adaptively balances exploration in the search
space (via V log pg) against optimization (via V f), while avoiding Hessian computations. Our final
estimate p., is a function of the ratios Zj,/Zj_; of the intermediate distributions P, the so-called
“bridges” [10, 66]. We accurately estimate these ratios by warping the space between the distributions
Py, using neural density estimation.

Contributions and outline Section 2 presents our method, while Section 3 provides guarantees
for its statistical performance and overall efficiency. A major focus of this work is empirical, and
accordingly, Section 4 empirically demonstrates the superiority of neural bridge sampling over
competing techniques in a variety of applications: (i) we evaluate the sensitivity of a formally-verified
system to domain shift, (ii) we consider design optimization for high-precision rockets, and (iii) we
perform model comparisons for two learning-based approaches to autonomous navigation.

1.1 Related Work

Safety evaluation Several communities [27] have attempted to evaluate the closed-loop perfor-
mance of cyber-physical, robotic, and embodied agents both with and without learning-based com-
ponents. Existing solutions are predicated on the definition of the evaluation problem: verification,
falsification, or estimation. In this paper we consider a method that utilizes interactions with a
gradient oracle in order to solve the estimation problem (1). In contrast to our approach, the ver-
ification community has developed tools (e.g. [56, 24, 4]) to investigate whether any adverse or
unsafe executions of the system exist. Such methods can certify that failures are impossible, but
they require that the model is written in a formal language (a barrier for realistic systems), and they
require whitebox access to this formal model. Falsification approaches (e.g. [40, 31, 5, 108, 34, 83])
attempt to find any failure cases for the system (but not the overall probability of failure). Similar to
our approach, some falsification approaches (e.g. [1, 107]) utilize gradient information, but their goal
is to simply minimize f(z) rather than solve problem (1). Adversarial machine learning is closely
related to falsification; the key difference is the domain over which the search for falsifying evidence
is conducted. Adversarial examples (e.g. [61, 53, 95, 99]) are typically restricted to a p-norm ball
around a point from a dataset, whereas falsification considers all possible in-distribution examples.



Both verification and falsification methods provide less information about the system under test
than estimation-based methods: they return only whether or not the system satisfies a specification.
When the system operates in an unstructured environment (e.g. driving in an urban setting), the mere
existence of failures is trivial to demonstrate [93]. Several authors (e.g. [76, 104]) have proposed that
it is more important in such settings to understand the overall frequency of failures as well as the
relative likelihoods of different failure modes, motivating our approach.

Sampling techniques and density estimation When sampling rare events and estimating their
probability, there are two main branches of related work: parametric adaptive importance sampling
(AIS) [63, 75] and nonparametric sequential Monte Carlo (SMC) techniques [32, 30]. Both of
these literatures are advanced forms of variance reduction techniques, and they are complementary
to standard methods such as control variates [91, 46]. Parametric AIS techniques, such as the
cross-entropy method [90], postulate a family of distributions for the optimal importance-sampling
distribution. They iteratively perform heuristic optimization procedures to update the sampling
distribution. SMC techniques perform sampling from a sequence of probability distributions defined
nonparametrically by the samples themselves. The SMC formalism encompasses particle filters,
birth-death processes, and smoothing filters [29]. Our technique blends aspects of both of these
communities: we include parametric warping distributions in the form of normalizing flows [82]
within the SMC setting.

Our method employs bridge sampling [10, 66], which is closely related to other SMC techniques
such as umbrella sampling [23], multilevel splitting [16, 20], and path sampling [41]. The operational
difference between these methods is in the form of the intermediate distribution used to calculate
the ratio of normalizing constants. Namely, the optimal umbrella sampling distribution is more
brittle than that of bridge sampling [23]. Multilevel splitting employs hard barriers through indicator
functions, whereas our approach relaxes these hard barriers with smoother exponential barriers. Path
sampling generalizes bridge sampling by taking discrete bridges to a continuous limit; this approach
is difficult to implement in an adaptive fashion.

The accuracy of bridge sampling depends on the overlap between intermediate distributions P.
Simply increasing the number of intermediate distributions is inefficient, because it requires running
more simulations. Instead, we employ a technique known as warping, where we map intermediate
distributions to a common reference distribution [102, 65]. Specifically, we use normalizing flows
[86, 54, 81, 82], which efficiently transform arbitrary distributions to standard Gaussians through a
series of deterministic, invertible functions. Normalizing flows are typically used for probabilistic
modeling, variational inference, and representation learning. Recently, Hoffman et al. [47] explored
the benefits of using normalizing flows for reparametrizing distributions within MCMC; our warping
technique encompasses this benefit and extends it to the SMC setting.

Beyond simulation This paper assumes that the generative model Py of the operating domain
is given, so all failures are in the modeled domain by definition. When deploying systems in the
real world, anomaly detection [22] can discover distribution shifts and is complementary to our
approach (see e.g. [26, 68]). Alternatively, the problem of distribution shift can be addressed offline
via distributional robustness [39, 70, 84], where we analyze the worst-case probability of failure
under an uncertainty set composed of perturbations to F.

2 Proposed approach

As we note in Section 1, naive Monte Carlo measures probabilities of rare events inefficiently. Instead,
we consider a sequential Monte Carlo (SMC) approach: we decompose the rare-event probability
D~ into a chain of intermediate quantities, each of which is tractable to compute with standard
Monte Carlo methods. Specifically, consider K distributions Py with corresponding (unnormalized)
probability densities pj, and normalizing constants Z, := [ + Pr(w)dz. Let po correspond to the
density for Py and po () := po(x)I{f(z) <~} be the (unnormalized) conditional density for the
region of interest. Then, we consider the following decomposition:

ZK poo(X):| ZK A Zk
=Po(f(X) <) =Ep, | = - = . 2
Py =Po(f(X) <) =Ep, [ZO (X)) Zo }1 Zr— @



Algorithm 1 Neural bridge sampling

Input: N samples 20 "X Py, MCMC steps T, step size o € (0, 1), stop condition s € (0,1)
Initialize k < 0, 8o « 0, log(p,) < 0
while + >, I{f(z}) <~} < s do
Br+1 < solve problem (8)
for i = 1 to NV, in parallel
ah Rt Mult({pg+1(x¥)/pr.(xF)}) // multinomial resampling
fort =1t T
for i = 1 to N, in parallel
a1 < WarpedHMC (zF, 0) // Appendix A
Ok+1 < argmin problem (6) // train normalizing flow on {z*™'} via SGD
log(p) < log(py) +1log(Zk+1/Zk) /I warped bridge estimate (5)
k+—k+1
log(p+) ¢ log(py) + log(; 32, I{f(«7) < ~})

Although we are free to choose the intermediate distributions arbitrarily, we will show below that
our estimate for each ratio Zj,/Z;,_1 and thus p, is accurate insofar as the distributions sufficiently
overlap (a concept we make rigorous in Section 3). Thus, the intermediate distributions act as
bridges that iteratively steer samples from Py towards Pk . One special case is the multilevel splitting
approach [50, 16, 104, 74], where py(x) := po(z)I{f(x) < Lj} forlevels oo =: Ly > Ly ... >
Ly := . In this paper, we introduce an exponential tilting barrier [94]

pi(x) = po(z) exp (Bi [y — f(2)]_), 3)
which allows us to take advantage of gradients V f(z). Here we use the “negative ReLU” function
defined as [z]_ := —[—x]4+ = xzI{z < 0}, and we assume that the measure of non-differentiable

points, e.g. where V f(z) does not exist or f(x) = =, is zero (see Appendix A for a detailed
discussion of this assumption). We set 5y := 0 and adaptively choose 5, > [r_1. The parameter
B tilts the distribution towards the distribution of interest: pp — poo as B — oco. In what follows,
we describe an MCMC method that combines exploration, exploitation, and optimization to draw
samples X f ~ P.. We then show how to compute the ratios Zy /Zj,_1 given samples from both Py_4
and Pj,. Finally, we describe an adaptive way to choose the intermediate distributions Py. Algorithm
1 summarizes the overall approach.

MCMC with an exponential barrier Gradient-based MCMC techniques such as the Metropolis-
adjusted Langevin algorithm (MALA) [89, 88] or Hamiltonian Monte Carlo (HMC) [35, 73] use
gradients V log po(z) to efficiently explore the space X and avoid inefficient random-walk behav-
ior [37, 25]. Classical mechanics inspires the HMC approach: HMC introduces an auxiliary random
momentum variable v € V and generates proposals by performing Hamiltonian dynamics in the
augmented state-space X x V. These dynamics conserve volume in the augmented state-space, even
when performed with discrete time steps [58].

By including the barrier exp (8 [y — f(z)]_), we combine exploration with optimization; the mag-
nitude of 5y, in the barrier modulates the importance of V f (optimization) over V log pg (exploration),
two elements of the HMC proposal (see Appendix A for details). We discuss the adaptive choice
for Bj below. Most importantly, we avoid any need for Hessian computation because the dynam-
ics conserve volume. As Algorithm 1 shows, we perform MCMC as follows: given N samples
a:f_l ~ Py_1 and a threshold Sy, we first resample using their importance weights (exploiting the
performance of samples that have lower function value than others) and then perform 7" HMC steps.
In this paper, we implement split HMC [92] which is convenient for dealing with the decomposition
of log pi () into log po(z) + Br[y — f(x)]- (see Appendix A for details).

Estimating 7}, /7, via bridge sampling Bridge sampling [10, 66] allows estimating the ratio of
normalizing constants of two distributions by rewriting

PR/ 77 /S TV (6.5 /0 5) RS v R {0 /S C O B
Zir  ZP)Zk Ep, [pg (X)/pr(X)] S e ) pelal)

where p? is the density for a bridge distribution between P;,_; and Py, and ZP is its associated

normalizing constant. We employ the geometric bridge p2 (z) := \/pr—1(x)px(x). In addition to



being simple to compute, bridge sampling with a geometric bridge enjoys the asymptotic performance
guarantee that the relative mean-square error scales inversely with the Bhattacharyya coefficient,

G(Pr-1,P:) = [/ pkz’kii(f)p’%—(:)dx € 0,1] (see Appendix B for a proof). This value is closely

related to the Hellinger distance, H(Pj_1, Py) = \/ 2 — 2G(Pg—1, Px). In Section 3, we analyze
the ramifications of this fact on the overall convergence of our method.

Neural warping Both HMC and bridge sampling benefit from warping samples x; into a different
space. As Betancourt [11] notes, HMC mixes poorly in spaces with ill-conditioned geometries.
Girolami and Calderhead [42] and Hoffman et al. [47] explore techniques to improve mixing efficiency
by minimizing shear in the corresponding Hamiltonian dynamics. One way to do so is to transform
to a space that resembles a standard isotropic Gaussian [62].

Conveniently, transforming P to a common distribution (e.g. a standard Gaussian) also benefits
the bridge-sampling estimator (4). As noted above, the error of the bridge estimator grows with
the Hellinger distance between the distributions H (Py_1, Py ). However, normalizing constants Z,
are invariant to (invertible) transformations. Thus, transformations that warp the space between
distributions reduce the error of the bridge-sampling estimator (4). Concretely, we consider invertible
transformations W}, such that y¥ = Wj,(z¥). For clarity of notation, we write probability densities
over the space ) as ¢, the corresponding distributions for Y'* as @, and the inverse transformations
W, (y) as Vi (y). Then we can write the bridge-sampling estimate (4) in terms of the transformed
variables y. The numerator and denominator are as follows:

E VE(Y)}:E oY) | _ g pi(Vie(Y))| det Jy,, (V)]
k1 G (Y) et i (Y) et 1\ st (Vieea (V) det Jy,_, (Y))]

;o (Ga)

or(Y) oY) | T
By transforming all P, into ) to resemble standard Gaussians, we reduce the Hellinger distance
H(Qk-1,Qr) < H(Py_1, P). Note that the volume distortions in the expression (5) are functions of
the transformation V4, so they do not require computation of the Hessian V2 f. However, computing
(Vi (y)) requires evaluations of f (e.g. calls of the simulator). We consider the cost-benefit analysis
of warping in Section 3.

(V)] _ $r-1(Y)
o |5 }EQ{ ; P VeV det Ty, (V)]

\/pk_l(Vk—l(Y)”det Jvkl(Y)] ) (5b)

Classical warping techniques include simple mean shifts or affine scaling [102, 65]. Similar to
Hoffman et al. [47], we consider normalizing flows, a much more expressive class of transformations
that have efficient Jacobian computations [82]. Specifically, given samples z¥, we train masked
autoregressive flows (MAFs) [81] to minimize the empirical KL divergence between the transformed
samples y¥ and a standard Gaussian Dkr,(Q||N (0, I)). Parametrizing W}, by 6y, this minimization
problem is equivalent to:

ol 1 2

minimizeg Z —log |det Jw, (:cf, 0)‘ + 3 HWk (:vf, 9) H2 . (6)

i=1
The KL divergence is an upper bound to the Hellinger distance; we found minimizing the former to
be more stable than minimizing the latter. Furthermore, to improve training efficiency, we exploit
the iterated nature of the problem and warm-start the weights 6, with the trained values 6;_; when
solving problem (6) via stochastic gradient descent (SGD). As a side benefit, the trained flows can be
repurposed as importance-samplers for the ladder of distributions from nominal behavior to failure.

Adaptive intermediate distributions Because we assume no prior knowledge of the system under
test, we exploit previous progress to choose the intermediate 5y online; this is a key difference to
our approach compared to other forms of sequential Monte Carlo (e.g. [71, 72]) which require a
predetermined schedule for 8. We define the quantities

ar = 3 H{F@h) <a}/N, bu(B) == Ty exp (8= Bi)ly — f))-) /N ()
The first is the fraction of samples that have achieved the threshold. The second is an importance-

sampling estimate of Fj 1 given samples x¥ ~ Py, written as a function of 3. For fixed fractions
a,s € (0,1) with a < s, Br+1 solves the following optimization problem:

maximize S s.t. {bp(8) > «, ar/br(B) < s}. (8)



Since by (/3) is monotonically decreasing and by (5) > ay, this problem can be solved efficiently via
binary search. The constant « tunes how quickly we enter the tails of P (smaller o means fewer
iterations), whereas s is a stop condition for the last iteration. Choosing ;1 via (8) yields a crude
estimate for the ratio Zy1/Zy as a (or ax —1/s for the last iteration). The bridge-sampling estimate

Ek.“ corrects this crude estimate once we have samples from the next distribution Py, 1.

3 Performance analysis

We can write the empirical estimator of the function (2) as
. ~ 1 Poo (sz)
pv:HEkN;TiK)’ &)

where ), is given by the expression (4) without warping, or similarly, as a Monte Carlo estimate
of the expression (5) with warping. We provide guarantees for both the time complexity of running
Algorithm 1 (i.e. the iterations K) as well as the overall mean-square error of p.,. For simplicity, we
provide results for the asymptotic (large /V) and well-mixed MCMC (large T') limits. Assuming these
conditions, we have the following:

Proposition 1. Let K := |log(p,)/log(c)]. Then, for large N and T, s > 1/3, and p-, < s, the
total number of iterations in Algorithm 1 approaches K *3 Ky + I {py/ afo < s}. Furthermore,
for the non-warped estimator, the asymptotic relative mean-square error E[(p/p, — 1) is

K—-1

_ 3 G(Pkfl, Pk+1) o 1—s i
NZ< Pk L, Pr)? 1) NZ (G(Pk_l,Pk)G(Pk,PHI) 1)+ SN +O(N)' (10)

k=1

In particular, if the inverse Bhattacharyya coefficients are bounded such that W < D (with

D > 1), then the asymptotic relative mean-square error satisfies E[(p.,/py — 1)>] < 2KD/N. For
the warped estimator, replace G(P;, P;) with G(Q;, Q;) in the expression (10).

See Appendix B for the proof. We provide some remarks about the above result. Intuitively, the first
term in the bound (10) accounts for the variance of E}.. The denominator of F;_; and numerator

of Ek both depend on x ; the second sum in (10) accounts for the covariance between those terms.
Furthermore, the quantmes in the bound (10) are all empirically estimable, so we can compute the
mean-square error from a single pass of Algorithm 1. In particular,

zZB 7P G(Py_1, Pis1) Zg Zx Zy
P P — ) — 11
( k—1; k) Zk R Zk G(Pk71,Pk)G(Pk7Pk+1) Zk ZB ZkB+17 (11

where Z{' /Z), = Ep, [pf (X)pP,1(X)/pr(X)?]. The last term in the bound (10) is the relative
variance of the final Monte Carlo estimate >, I{ f(zX) < ~}/N.

Overall efficiency The statistical efficiency outlined in Proposition 1 is pointless if it is accompanied
by an overwhelming computational cost. We take the atomic unit of computation to be a query of
the simulator, which returns both evaluations of f(x) and V f(x); we assume other computations to
be negligible compared to simulation. As such, the cost of Algorithm 1 is N(1 4+ KT') evaluations
of the simulator without warping and N (1 + KT') + 2K N with warping. Thus, the relative burden
of warping is minimal, because training the normalizing flows to minimize Dk, (Q||N(0,1))
requires no extra simulations. In contrast, directly minimizing Dk, (Qr—1||@x) would require extra
simulations at each training step to evaluate py (V. (y)).

Our method can exploit two further sources of efficiency. First, we can employ surrogate models
for gradient computation and/or function evaluation during the 7' MCMC steps. For example, using
a surrogate model for a fraction d < 1 — 1/T of the MCMC iterations reduces the factor T' to
Ts := (1 — d)T in the overall cost. Surrogate models have an added benefit of making our approach
amenable for simulators that do not provide gradients. The second source of efficiency is parallel
computation. Given C' processors, the factor NV in the cost drops to N, := [N/C].

The overall efficiency of the estimator (9)—relative error multiplied by cost [44]—depends on p., as
log(p~)?. In contrast, the standard Monte Carlo estimator has cost N to produce an estimate with
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O(1/(p~log(p,)?)): the efficiency gains over naive Monte Carlo increase as p., decreases.

relative error . Thus, the relative efficiency gain for our estimator (9) over naive Monte Carlo is

4 Experiments

We evaluate our approach in a variety of scenarios, showcasing its use in efficiently evaluating the
safety of autonomous systems. We begin with a synthetic problem to illustrate the methodology
concretely as well as highlight the pitfalls of using gradients naively. Then, we evaluate a formally-
verified neural network controller [48] on the OpenAl Gym continuous MountainCar environment [67,
17] under a domain perturbation. Finally, we consider two examples of using neural bridge sampling
as a tool for engineering design in high-dimensional settings: (a) comparing thruster sizes to safely
land a rocket [13] in the presence of wind, and (b) comparing two algorithms on the OpenAl Gym
CarRacing environment (which requires a surrogate model for gradients) [55].

We compare our method with naive Monte Carlo (MC) and perform ablation studies for the effects
of neural warping (denoted as NB with warping and B without). We also provide comparisons with
adaptive multilevel splitting (AMS) [16, 104, 74]. All methods are given the same computational
budget as measured by evaluations of the simulator. This varies from 50,000-100,000 queries to run
Algorithm 1 as determined by p., (see Appendix C for details of each experiment’s hyperparameters).
However, despite running Algorithm 1 with a given +y, we evaluate estimates p., ., for all vyiest > 7.
Larger 7tcst, require fewer queries to evaluate p.,__, (as Algorithm 1 terminates early). Thus, we adjust
the number of MC queries accordingly for each 7;.st. Independently, we calculate the ground-truth
values p.,._, for the non-synthetic problems using a fixed, very large number of MC queries.

Synthetic problem We consider the two-dimensional function f(z) = — min(|z|, 2[z), where
ap;) is the i"™ dimension of z € R?. We let v =—3 and Py =N(0, I) (for which p,, = 3.6 - 107°).
Note that V2 f(x) = 0 almost everywhere, yet V f(z) has negative divergence in the neighborhoods
of &y =|x[y|. Indeed, gradient descent collapses x; ~ Py to the lines [y = |x[y1], and the ill-defined
nature of the Hessian makes it unsuitable to track volume distortions. Thus, simple gradient-based
transformations used to find adversarial examples (e.g. minimize f(z)) should not be used for
estimation in the presence of non-smooth functions, unless volume distortions can be quantified.

Figure 1(a) shows the region of interest in pink and illustrates the gradual warping of p towards po.
over iterations of Algorithm 1. Figures 1(b) and 1(c) indicate that all adaptive methods outperform
MC for p.,.., < 1073. For larger p.,..,, the overhead of the adaptive methods renders MC more
efficient (Figure 1(c)). The linear trend of the yellow MC/NB line in Figure 1(c) aligns with the
theoretical efficiency gain discussed in Section 3. Finally, due to the simplicity of the search space
and the landscape of f(z), the benefits of gradients and warping are not drastic. Specifically, as
shown in Figure 1(c), all adaptive methods have similar confidence in their estimates except at very
small p.,, . < 1075, where NB outperforms AMS and B. The next example showcases the benefits
of gradients as well as neural warping in a more complicated search space.

Sensitivity of a formally-verified controller under domain perturbation We consider a minimal
reinforcement learning task, the MountainCar problem [67] (Figure 2(a)). Ivanov et al. [48] created
a formally-verified neural network controller to achieve reward > 90 over all initial positions
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Figure 3. Rocket design experiments. NB’s high-confidence estimates enable quick design iterations
to either increase the landing pad radius or consider a third rocket that fails with probability < 107°.
Low-dimensional visualization shows that Rocket2’s failure types are more concentrated than those of
Rocketl, even though Rocket2 has a higher overall probability of failure.
€ [-0.59, —0.4] and O initial velocity (see Appendix C). The guarantees of formal verification
hold only with respect to the specified domain; even small domain perturbations can affect system
performance [49]. We illustrate this sensitivity by adding a small perturbation to the initial velocity
~ N(0,107*) and seek p., := Py(reward < 90) for Py = Unif(—0.59, —0.4) x N'(0,10~*). We
measure the ground-truth failure rate as p,, = 1.6 - 10~° using 50 million naive Monte Carlo samples.

Figure 2(b) shows contours of f(z). Notably, the failure region (dark blue) is an extremely irregular
geometry with pathological curvature, which renders MCMC difficult for AMS and B [11]. Quantita-
tively, poor mixing adversely affects the performance of AMS and B, and they perform even worse
than MC (Figure 2(c)). Whereas gradients help B slightly over AMS, gradients and neural warping
together help NB outperform all other methods. We next move to higher-dimensional systems.

Rocket design We now consider the problem of autonomous, high-precision vertical landing of
an orbital-class rocket (Figure 3(a)), a technology first demonstrated by SpaceX in 2015. Rigorous
system-evaluation techniques such as our risk-based framework are powerful tools for quickly
exploring design tradeoffs. In this experiment, the amount of thrust which the rocket is capable of
deploying to land safely must be balanced against the payload it is able to carry to space; stronger
thrust increases safety but decreases payloads. We consider two rocket designs and we evaluate their
respective probabilities of failure (not landing safely on the landing pad) for landing pad sizes up to
15 meters in radius. That is, — f () is the distance from the landing pad’s center at touchdown and
v = —15. We evaluate whether the rockets perform better than a threshold failure rate of 10~°.

We let P, be the 100-dimensional search space parametrizing the sequence of wind-gusts during the
rocket’s flight. Appendix C contains details for this parametrization and the closed-loop simulation
of the rocket’s control law (based on industry-standard approaches [13, 87]). Figure 3(b) shows the
estimated performance of the two rockets. We show only MC and NB for clarity; comparisons with
other methods are in Table 1 (with ground-truth values calculated using 50 million naive Monte Carlo
simulations). Whereas both NB and MC confidently estimate Rocket2’s failure rate as higher than
10~*, only NB confidently estimates Rocket1’s failure rate as higher than 10~5, letting engineers
quickly judge whether to increase the size of the landing pad or build a better rocket.

We can also distinguish between the modes of failure for the rockets. Namely, Figure 3(c) shows
a PCA projection of failures (with 7.5t = —15) onto 2 dimensions. Analysis of the PCA modes
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Figure 4. CarRacing experiments. MC cannot distinguish between the policies below vtest = 160. NB’s
high-confidence estimates enable model comparisons at extreme limits of failure. Low-dimensional
visualization of the failure modes shows that the algorithms fail in distinct ways.

Table 1: Relative mean-square error E[(p,/p, — 1)?] over 10 trials

Synthetic MountainCar ~ Rocketl Rocket2 AttentionAgentRacer ~ WorldModelRacer
MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS  0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218
Py 3.6-107% 1.6-107° 2.3-107° 24-100% =25.107° ~95-107°

indicates that failures are dominated by high altitude and medium altitude gusts. Even though Rocket2
has a higher probability of failure, its failure mode is more concentrated than Rocket1’s failures.

Car racing The CarRacing environment (Figure 4(a)) is a challenging reinforcement-learning
task with a continuous action space and pixel observations. Similar observation spaces have been
proposed for real autonomous vehicles (e.g. [7, 60, 103]). We compare two recent approaches,
AttentionAgentRacer [98] and WorldModelRacer [43] that have similar average performance: they
achieve average rewards of 903 + 49 and 899 + 46 respectively (mean =+ standard deviation over 2
million trials). Both systems utilize one or more deep neural networks to plan in image-space, so
neither has performance guarantees. We evaluate the probability of getting small rewards (v = 150).

The 24-dimensional search space Py parametrizes the generation of the racing track (details are in
Appendix C). This environment does not easily provide gradients due to presence of a rendering engine
in the simulation loop. Instead, we fit a Gaussian process surrogate model to compute V f(z) (see
Appendix C). As these experiments are extremely expensive (taking up to 1 minute per simulation),
we only use 2 million naive Monte Carlo samples to compute the ground-truth failure rates. Figure
4(b) shows that, even though the two models have very similar average performance, their catastrophic
failure curves are distinct. Furthermore, MC is unable to distinguish between the policies below
rewards of 160 due to its high uncertainty, whereas NB clearly shows that WorldModelRacer is
superior. Note that, because even the ground-truth has non-negligible uncertainty with 2 million
samples, we only report the variance component of relative mean-square error in Table 1.

As with the rocket design experiments, we visualize the modes of failure (defined by ;e = 225) via
PCA in Figure 4(c). The dominant eigenvectors involve large differentials between radii and angles
of consecutive checkpoints that are used to generate the racing tracks. AttentionAgentRacer has two
distinct modes of failure, whereas WorldModelRacer has a single mode.

5 Conclusion

There is a growing need for rigorous evaluation of safety-critical systems which contain components
without formal guarantees (e.g. deep neural networks). Scalably evaluating the safety of such systems
in the presence of rare, catastrophic events is a necessary component in enabling the development
of trustworthy high-performance systems. Our proposed method, neural bridge sampling, employs
three concepts—exploration, exploitation, and optimization—in order to evaluate system safety with
provable statistical and computational efficiency. We demonstrate the performance of our method on
a variety of reinforcement-learning and robotic systems, highlighting its use as a tool for continuous
integration and rapid engineering design. In future work, we intend to investigate how efficiently
sampling rare failures—like we propose here for evaluation—could also enable the automated repair
of safety-critical reinforcement-learning agents.



Broader Impact

This paper presents both foundational theory and methods for efficiently evaluating the performance
of safety-critical autonomous systems. By definition, such systems can cause injury or death if they
malfunction [15]. Thus, improving the tools that practitioners have to perform risk-estimation has
the potential to provide a strong positive impact. On the other hand, the improved scalability of
our method could be used to more efficiently find (zero-day) exploits and failure modes in Fy (the
model of the operational design domain). However, we note that adversarial examples or exploits can
also be found via a variety of purely optimization-based methods [3]. The nuances of our method
are primarily concerned with the frequency of adverse events, an extra burden; thus, we anticipate
they will be of little interest to malicious actors who can manipulate the observations and sensor
measurements of complex systems. Another potential concern about the use of our method is with
respect to the identification of Py, which we specifically assume to be known in this paper. The gap
between P, in simulation and the real distribution of the environment could lead to overconfidence
in the capabilities of the system under test. In Section 1.1 we outline complementary work in
anomaly detection and distributionally robust optimization which could mitigate such risks. Still,
more work needs to be done to standardize the operational domain of specific tasks by regulators and
technology-stakeholders. Nevertheless, we believe that our method will enable the comparison of
autonomous systems in a common language—risk—across the spectrum from engineers to regulators
and the public.

The applications of our technology are diverse (cf. Corso et al. [27]), ranging from testing autonomous
vehicles [76, 74] and medical devices [77] to evaluating deep neural networks [104] and reinforcement-
learning agents [101]. In the case of autonomous vehicles, Sparrow and Howard [97] argue that it will
be morally wrong not to deploy self-driving technology once performance exceeds human capabilities.
Our work is an important tool for determining when this performance threshold is achieved due to the
rare nature of serious accidents [51]. While the widespread availability of autonomy-enabled devices
could narrowly benefit public health, there are many external risks associated with their development.
First, many learning-based components of these systems will require massive and potentially invasive
data collection [85]; preserving privacy of the public via federated learning [64] and differential
privacy-based mechanisms [38] should remain important initiatives within the machine-learning
community. A second potential negative consequence of the applications like autonomous vehicles is
the use of the real-world as a “simulator” within a reinforcement-learning scheme by releasing “beta”
autonomy features (e.g. Tesla Autopilot [52]). Unlike established industries such as aerospace [100],
many potential applications currently lack regulation and standards; it is important to ensure that
industry works with policy makers to develop safety standards in a way that avoids regulatory capture.
If widely adopted in regulatory frameworks, our tool would enable rational decisions about the impact,
positive or negative, of safety-critical autonomous systems before real lives are affected.

More broadly, the advent of autonomy could spark significant societal changes. For example, the
autonomous applications described previously could become core components of weapons systems
and military technology that are incompatible with (modern interpretations of) just war theory [96].
Similarly, the automation of the transportation industry has the potential to rapidly destroy the
economics of public infrastructure and cost millions of jobs [97]. Thus, Benkler [9] highlights
that there is a growing need for the academic community to take action on defining the broader
performance criteria to which we will hold Al applications. Brundage et al. [18] and Wing [106]
outline broad research agendas which are necessarily interdisciplinary. Still, much more work needs
to be done to empower researchers to influence policy. These efforts will require systemic initiatives
by research institutions and organizations to engage with local, national, and international governing
bodies.
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Algorithm 2 WarpedHMC

Input: Sample 2, momentum v ~ A(0, I), transform Vp and its inverse Wy, scale factor 3, step size €
Yy < Wo(z)

5 v — 05eBI{f(x) > 7} v, () VF (2)

9 < ycos(e) + vsin(e)

0 < D cos(e€) — ysin(e)

b o — 0.5eBI{f(2) > 7} v, (1) VF ()

x < & with probability min(1, exp(—H (9, 9) + H(y,v)))
Return x

A Warped Hamiltonian Monte Carlo (HMC)

In this section, we provide a brief overview of HMC as well as the specific rendition, split HMC
[92]. Given “position” variables x and “momentum” variables v, we define the Hamiltonian for
a dynamical system as H (x,v) which can usually be written as U (z) + K (v), where U(x) is the
potential energy and K (v) is the kinetic energy. For MCMC applications, U (z) = —log(po(«x)) and
we take v ~ N (0, I) so that K (v) = ||v]|?/2. In HMC, we start at state x; and sample v; ~ N (0, I).
We then simulate the Hamiltonian, which is given by the partial differential equations:

. O0H | OH
-

T U7 o

Of course, this must be done in discrete time for most Hamiltonians that are not perfectly integrable.
One notable exception is when x is Gaussian, in which case the dynamical system corresponds to the
evolution of a simple harmonic oscillator (i.e. a spring-mass system). When done in discrete time, a
symplectic integrator must be used to ensure high accuracy. After performing some discrete steps of
the system (resulting in the state (xf,vy)), we negate the resulting momentum (to make the resulting
proposal reversible), and then accept the state (x ¢, —vy) using the standard Metropolis-Hastings
criterion: min(1, exp(—H (s, —vy) + H(x;, v;))) [45].

The standard symplectic integrator—the leap-frog integrator—can be derived using the following
symmetric decomposition of the Hamiltonian (performing a symmetric decomposition retains the
reversibility of the dynamics): H(z,v) = U(x)/2+ K (v)+ U(z)/2. Using simple Euler integration
for each term individually results in the following leap-frog step of step-size e:

€ OU (x;)
U2 =TS o
0K
€ OU (zy)

ST

where each step simply simulates the individual Hamiltonian Hy (z,v) = U(x)/2, Ha(x,v) = K(v),
or Hs(z,v) = U(x)/2 in sequence. As presented by Shahbaba et al. [92], this same decomposition
can be done in the presence of more complicated Hamiltonians. In particular, consider the Hamiltonian
H(z,v) = Ui(z) + Up(z) + K (v). We can decompose this in the following manner: H;(x,v) =
Ui(z)/2, Ha(x,v) = Up(z) + K(v), and H3(z,v) = Uy (x)/2. We can apply Euler integration to
the momentum v for the first and third Hamiltonians and the standard leap-frog step to the second
Hamiltonian (or even analytic integration if possible). For this paper, we have Uy(x) = — log po(z)
and Uy (z) = =By — f(2)]-.

To account for warping, the modifications needed to the HMC steps above are simple. When

performing warping, we simply perform HMC for a Hamiltonian H (y, v) that is defined with respect
to the warped position variable y, where x = Vjp(y) for given parameters ¢. By construction of
the normalizing flows, we assume y ~ N (0, I), so that we can perform the dynamics for ﬁg(y, v)
analytically. Furthermore, the Jacobian Jy, (y) is necessary for performing the Euler integration
of Hy(y,v) and Hs(y,v). This is summarized in Algorithm 2. Note that we always perform the
Metropolis-Hastings acceptance with respect to the true Hamiltonian H, rather than the Hamiltonian
H that assumes perfect training of the normalizing flows.
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HMC and non-smooth functions In Section 2, we assumed that the measure of non-differentiable
points is zero for the energy potentials considered by HMC. As discussed by Afshar and Domke [2],
the inclusion of the Metropolis-Hastings acceptance criterion as well as the above assumption ensures
that HMC asymptotically samples from the correct distribution even for non-smooth potentials. An
equivalent intuitive explanation for this can be seen by viewing the ReLU function [z] as the limit
of softplus functions g (z) := log(1 + exp(kx))/k as the sharpness parameter k — co. We can
freely choose k such that, up to numerical precision, Algorithm 2 is the same whether we consider
using a ReLU or sufficiently sharp (e.g. large k) softplus potential, because, with probability one,
we will not encounter the points where the potentials differ. When further knowledge about the
structure of the non-differentiability is known, the acceptance rate of HMC proposals can be improved
[78, 57,79, 2, 21].

B Performance analysis

B.1 Proof of Proposition 1

We begin with showing the convergence of the number of iterations. To do this, we first show almost
sure convergence of 3y in the limit N — co. We note that in the optimization problem (8), 3y, is a
feasible point, yielding bi(8) = 1. Thus, Bxt+1 > Bx > Bo := 0. Due to this growth of 8 with k,

we have p ()
k+1 Pk+1
=E —— | <1,
Zy { pr(X) ] =

VA X
Pe(f(X) <7) = Epy., { Zl pfi(l(X)>
_ Zgt1

— A ]Ep,chl [I{f(X) < 7)}]

<Pra(f(X) <),

By the unfiorm convergence of empirical measures offered by the Glivenko-Cantelli Theorem,
the value ar — Pr(f(X) < ~) almost surely. Then, the stop condition can be rewritten as
be(8) > ar/s — Pp(f(X) < v)/s > py/s. Since by(B) is monotonically decreasing in the
quantity 5 — S, this constraint gives an upper bound for 51, and, as a result, all 3 are almost
surely bounded from above and below. We denote this interval as 5.

{f(X) <)}

Now, we consider the convergence of the solutions to the finite [V versions of problem (8), denoted
B, to the “true” optimizers 3 in the limit as N — oo. Leaving the dependence on 3, implicit for
the moment, we consider the random variable Y := ¢(X; 8) := exp ((8 — Br)[y — f(X)]-). Then,
since § € B is bounded and g is continuous in 3, we can state the Glivenko-Cantelli convergence of
the empirical measure uniformly over B: supgc s [|FN (Y) — F(Y)||sc — 0 almost surely, where
F is the cumulative distribution function for Y. Note that the constraints in the problem (8) can be
rewritten as expectations of this random variable Y. Furthermore, the function g is strictly monotonic
in 8 (and therefore invertible) for non-degenerate f(X) (i.e. f(x) > ~ for some non-negligible
measure under F;). Thus, we have almost sure convergence of the argmin 3 ,]cv 1 to Brt1-

Until now, we have taken dependence on 3, implicitly. Now we make the dependence explicit to
show the final step of convergence. In particular, we can write 851 as a function of fj, (along with
their empirical counterparts), For concreteness, we consider the following decomposition for two

iterations:
183 (BY) = B2(B1)] <182 (BY) = B2(B1)] + 12081 ) — B2(B1)]-

We have already shown above that the first term on the right hand side vanishes almost surely. By
the same reasoning, we know that 3)¥ — 3; almost surely. The second term also vanishes almost
surely since By1(8) is a continuous mapping. This is due to the fact that the constraint functions
in problem (8) are continuous functions of both 3 and () along with the invertibility properties
discussed previously. Then, we simply extend the telescoping series above for any & and similarly
show that all terms vanish almost surely. This shows the almost sure convergence for all 55 up to
some K.

Now we must show that K is bounded and almost surely converges to a constant. To do this we
explore the effects of the optimization procedure. Assuming the stop condition (the second constraint)
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does not activate, the first constraint in problem (8) has the effect of making Z1 /7 = « (almost
surely), which implies P11 (f(X) <) = Px(f(X) < v)/c. In other words, we magnify the event
of interest by a factor of 1/c. The second constraint can be rewritten as P11 (f(X) < ) < s. Thus,
we magnify the probability of the region of interest by factors of « unless doing so would increase
the probability to greater than s. In that case, we conclude with setting the probability to s (since
Ps(f(X) < ) is monotonically increasing in /5). In this way, we have 0 iterations for p., € [s, 1],
1 iteration for p., € [as, s), 2 iterations for p, € [a?s, as), and so on. Then, the total number of
iterations is (almost surely) |log(p- )/ log(a)] + I{p. /allosP)/los(@)] < g}

Now we move to the relative mean-square error of p.,. We employ the delta method, whereby, for
large N, this is equivalent to Var(log(p~)) (up to terms o(1/N)). For notational convenience, we

decompose Ej, into its numerator and denominator:

N
AX) = B OO /pa (), A= 1 Al

N
B(X) = s (O/pulX), Bri= 3 Bulab)

By construction (and assumption of large T"), Algorithm 1 has a Markov property that each iteration’s
samples z¥ are independent of the previous iterations’ samples a:f_l given (. For shorthand, let
Bo.r, denote all By, . . ., B. Conditioning on Sy., we have

Var(Ay) = Var (E[Ak|Bo:x]) + E [Var (Ax|Bo:k)] -

Since fy., approaches constants almost surely as N — oo, the first term vanishes and the second
term is the expectation of a constant. In particular, the second term is as follows:

Var (Ax|Box) = E [A2|Box] — (E [Ar|Box])”
_ (X)) 1 pr(X)
=Ep, _, [Pk—1(X)] (EPk_l [ Pk—l(X)]>

_ (Zf )2
Zi—1 Zi—1)

Similarly, Var(By|B80:x) = Zk—1/Zr — (ZP ) Z))?. Next we look at the covariance terms:
Cov(Ay_1,Ay) = Cov (E[Ar_1|Bo:x), E[Ak|Bo:x]) + E [Cov (Ar—1, Ak|Bo:x)] -

Again, the first term vanishes since (., approach constants as N — oo. By construction, the second
term is also 0 since the quantities are conditionally independent. Similarly, Cov(Bj_1, Bx) = 0 and
Cov(A;, Bj) = 0 for j # i — 1. However, there is a nonzero covariance for the quantities that depend
on the same distribution:

CovV (By, Ak+1|Bo:k+1) = E[BrAkt1|Bo:k+1] — E[Br|Bok+1] E [Akt1]Bo:k+1]

—Ep Vor-1(X)pr41(X) _ Zi Zf/?
: pr(X) Zy Zy

_Zy ZinZ

o Z Zn 7

By the large 7" assumption, the samples ¥ and m’; are independent for all 7 # j given Si. Then we

have
Var(Ag|Bo:.x) = Var(Ag|Bo:x)/N, Var(Bg|Bo.x) = Var(By|Bo:x)/N,
Cov(By, Ar11|Boks1) = Cov(Br, Ari1|Bo:ks1)/N.

1‘1\;1 f) jgz )) , reduces to a simple Monte Carlo estimate since ’; > 88 =
I{f(X) < ~}. Furthermore, this quantity is independent of all other quantities given f3y.x and, as

noted above, approaches s almost surely as N — oo.

The last term in p., + >
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Putting this all together, the delta method gives (as N — oo so that /3. approach constants almost
surely),

K ~ = K-1 s A
Var(log(py)) = D <( Var(Ay) | Var(By) ) -2} CoviBi, Adu1)  1-5 (]b) .
k=1

Zi} |Zk)* (2] 2k)? = ZeaZiZ; sN

The Bhattacharrya coefficient can be written as

G(Py-1,P%) = /X pr-1(2) pk(x)dx zZB

_ k
Zkfl Zk \/Zk,le'

Furthermore, we have

G(Py—1,Px+1) B zZe VI 12k ZuZiyr  ZE Zy
G(Pi—1,Pr)G(Pr, Pov1)  \/Zp1Zkp1 278 Zgn Zyze.,
yielding this final result
) A 2 K 1 2 KR! G(Pr—1, Pri1) 1—s 1
Var(log(py)) — N ; (m - 1) N ,;1 (G(Pk—lvpk)G(Pk»Pk+1) B 1) * sN to <N) - 42

We remark that a special case of this formula is for K’ = 1 and s = 1 (so only the first term survives),
which is the relative mean-square error for a single bridge-sampling estimate .

Now, since G(P, Q) > 0, the terms in the second sum are > —1 so that the second sum is < 2(K —

1)/N. Furthermore, since s > 1/3, the last term is also < 2/N. Thus, if we have m <D

(with D > 1), then the asymptotic relative mean-square error (12) is < 2K D/N (up to terms o0 (37)).

When performing warping, we follow the exact same pattern as the above results, conditioning on
both By.;, and Wy.x, where W, is defined as the identity mapping. We follow the same almost-sure
convergence proof for W;, as above for §j, which requires compactness of § € O, continuity of W
with respect to 6 and x, and that we actually achieve the minimum in problem (6). Although the first
two conditions are immediate in most applications, the last condition can be difficult to satisfy for
deep neural networks due to the nonconvexity of the optimization problem.

C Experimental setups

C.1 Hyperparameters

The number of samples N affects the absolute performance of all of the methods tested, but not their
relative performance with respect to each other. For all experiments, we use N = 1000 for B and NB
to have adequate absolute performance given our computational budget (see below for the computing
architecture used). Other hyperparameters were tuned on the synthetic problem and fixed for the rest
of the experiments (with the exception of the MAF architecture for the rocket experiments). The
hyperparameters were chosen as follows.

When performing Hamiltonian dynamics for a Gaussian variable, a time step of 27 results in no
motion and time step of 7 results in a mode reversal, where both the velocity and position are negated.
The 7 time step is in this sense the farthest exploration that can occur in phase space (which can
be intuitively understood by recognizing that the phase diagram of a simple spring-mass system
is a unit circle). Thus, we considered T = 4,8, 12, and 16 with time steps 7/7. We found that
T = 8 provided reasonable exploration (as measured by autocorrelations and by the bias of the final
estimator p.,) and higher values of T" did not provide much more benefit. For B, we allowed 2 more
steps 7' = 10 to keep the computational cost the same across B and NB. Similarly, for AMS, we set
T = 10. We also performed tuning online for the time ste? to keep the accepatance ratio between
0.4 and 0.8. This was done by setting the time step to sin™ " (min(1, sin(¢) exp((p — C)/2)), where
t is the current time step, p is the running acceptance probability for a single chain and C' = 0.4 if
p < 0.4 0r0.8if p > 0.8. This was done after every T' HMC steps.

For the step size of the bridge, we considered o € {0.01,0.1,0.3,0.5}. Smaller « results in fewer
iterations and better computational efficiency. However, we found that very small &« made MAF
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training difficult (see below for the MAF architectures used). We settled on o = 0.3, which provided
reasonable computational efficiency (no more than 11 iterations for the synthetic problem) as well
as stable MAF training. For AMS, we followed the hyperparameter settings of Webb et al. [104].
Namely, we chose a culling fraction of aanvs = 10%, where aians sets the fraction of particles that
are removed and rejuvenated at each iteration [104].

The MAF architectures for the synthetic, MountainCar, and CarRacing experiments were set at 5
MADE units, each with 1 hidden layer of 100 neurons. Because the rocket search space is very high
dimensional, we decreased the MAF size for computational efficiency: we set it at 2 MADE units,
each with hidden size 400 units. We used 100 epochs for training, a batch size of 100, a learning rate
of 0.01 and an exponential learning-rate decay with parameter 0.95.

Given the above parameters, the number of simulations for each experiment varies based on the final
probability in question p, (smaller values result in more simulations due to having a higher number
of iterations K'). We had runs of 111000, 101000, 91000, 71000, 91000, and 101000 simulations
respectively for the synthetic, MountainCar, Rocket1, Rocket2, AttentionAgentRacer, and WorldMod-
elRacer environments. We used these values as well as the ground truth p, values to determine the
number of particles allowed for AMS, Nams = 920,910, 820, 780, 820, 910 respectively, as AMS
has a total cost of Nans(1 + aamsT Kawms), where Kanms = log(p,)/log(1 — cams).

For the surrogate Gaussian process regression model for CarRacing, we retrained the model on the
most recent N simulations after every N1 simulations (e.g. after every 7' HMC iterations). This
made the amortized cost of training the surrogate model negligible compared to performing the
simulations themselves. We used a Matern kernel with parameter v = 2.5. We optimized the kernel
hyperparameters using an L-BFGS quasi-Newton solver.

Computing infrastructure and parallel computation Experiments were carried out on commodity
CPU cloud instances, each with 96 Intel Xeon cores @ 2.00 GHz and 85 GB of RAM. AMS, B,
and NB are all designed to work in a Map-Reduce paradigm, where a central server orchestrates
many worker jobs followed by synchronization step. AMS requires more iterations and fewer parallel
worker threads per iteration than B and NB. In particular, whereas B and NB perform N parallel
jobs per iteration, AMS only performs aansNawms parallel jobs per iteration. Thus, B and NB take
advantage of massive scale and parallelism much more than AMS.

C.2 Environment details
C.2.1 MountainCar

The MountainCar environment considers a simple car driving on a mountain road. The car can
sense horizontal distance s as well as its velocity v, and may send control inputs » (the amount
of power applied in either the forward or backward direction). The height of the road is given by:
h(s) = 0.45sin(3s) 4+ 0.55. The speed of the car, v, is a function of s and w only. Thus, the discrete
time dynamics are: si+1 = Sk + Vg+1 and vg1 = v + 0.0015u; — 0.0025 cos(3sy). For a given
episode the agent operating the car receives a reward of —0.1u} for each control input and 100 for
reaching the goal state.

In this experiment we explore the effect of domain shift on a formally verified neural network. We
utilize the neural network designed by Ivanov et al. [48]; it contains two hidden layers, each of 16
neurons, for a total of 337 parameters. For our experiments we use the trained network parameters
available at: https://github.com/Verisig/verisig. Ivanov et al. [48] describe a layer-by-
layer approach to verification which over-approximates the reachable set of the combined dynamics
of the environment and the neural network. An encoding of this system (network and environment) is
developed for the tool Flow* [24] which constructs the (overapproximate) reachable set via a Taylor
approximation of the combined dynamics.

The MountainCar environment is considered solved if a policy achieves an average reward of 90 over
100 trials. The authors instead seek to prove that the policy will achieve a reward of at least 90 for
any initial condition. By overapproximating the reachable states of the system, they show that the car
always receives a total reward greater than 90 and achieves the goal in less than 115 steps for a subset
of the intial conditions py € [—0.59, —0.4].
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C.2.2 Rocket design

The system under test is a rocket spacecraft with dynamics mp = f — mges , where m > 0 is the
mass, p(t) € R3 is the position, and e3 is the unit vector in the z-direction. While it is possible
to synthesize optimal trajectories for an idealized model of the system, significant factors such as
wind and engine performance (best modeled as random variables) are unaccounted for [13]. Without
feedback control, even small uncorrected tracking errors result in loss of the vehicle. In the case of
disturbances the authors suggest two approaches: (1) a feedback control law which tracks the optimal
trajectory (2) receding horizon model predictive control. The system we consider tracks an optimal
trajectory using a feedback control law. Namely, the optimal trajectory is given by the minimum fuel
solution to a linearized mode of the dynamics. Specifically, we consider the thrust force discretized in
time with a zero-order hold, such that f}, applied for time ¢ € [(k — 1)h, kh] for a time step h = 0.2.
Then, the reference thrust policy solves the following convex optimization problem

K
minimizez Il fxll2
i=1
such that px = v =0, || k|| < Finax,
h
Vg1 — vk = — fr. — hges,
m

h
Pk+1 — Pk = B} (Vg + Vit1)

(P3)k > 0.5[((p1)ks (P2)k) |25

where the last constraint is a minimum glide slope and Fj, .« is a maximum thrust value for the
nominal thrusters. This results in the thrust profile f*. The booster thrusters correct for disturbances
along the flight. The disturbances at every point in time follow a mixture of Gaussians. Namely, we
consider 3 wind gust directions, wy = (1,1,1)//(3), w2 = (0,1,0), and w3 = (1,0, 0). For every
second in time, the wind follows a mixture:

W ~N(0,I) +w B +wy B+ (1 — B)ws,

where B ~ Bernoulli(1/3) and B ~ Bernoulli(1/2). This results in 5 random variables for each
second, or a total of 100 random variables since we have a 20 second simulation. The wind intensity
experienced by the rocket is a linear function of height (implying a simplistic laminar boundary
layer): f,, = C'Wps for a constant C'. Finally, the rocket has a proportional feedback control law for
the booster thrusters to the errors in both the position py and velocity vg:

ffeedback,k = Clip'bY'HOYm(fI: - Kp(pkr - pZ) - Kv (’Uk - UI:))

The maximum norm for clip-by-norm is aF},.,, where a = 1.15 for Rocketl and a = 1.1 for
Rocket2, indicating that the boosters are capable of providing 15% or 10% of the thrust of the main
engine.

C.2.3 Car Racing

We compare the failure rate of agents solving the car-racing task utilizing the two distinct approaches
([43] and [98]). The car racing task differs from the other experiments due to the inclusion of a
(simple) renderer in the system dynamics. At each the step the agent recieves a reward of —0.1 +
Lrewtite(1000/N) — Lo f firack (100) where N is the total number of tiles visited in the track. The
environment is considered solved if the agent returns an average reward of 900 over 100 trials. The
search space P is the inherent randomness involved with generating a track. The track is generated
by selecting 12 checkpoints in polar coordinates, each with radian value uniformly in the interval
[2mi/12,27(i + 1)/12) fori = 0, ...11, and with radius uniformly in the interval [R/3, R], for a
given constant value R. This results in 24 parameters in the search space. The policies used for
testing are described below (with training scripts in the code supplement).

AttentionAgent Tang et al. [98] utilize a simple self-attention module to select patches from a
96x96 pixel observation. First the input image is normalized then a sliding window approach is
used to extract [N patches of size M x M x 3 which are flattened and arranged into a matrix of size
3M? x N. The self-attention module is used to compute the attention matrix A and importance vector
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(summation of each column of A). A feature extraction operation is applied to the top K elements of
the sorted importance vector and the selected features are input to a neural network controller. Both
the attention module and the controller are trained together via CMA-ES. Together, the two modules
contain approximately 4000 learnable parameters. We use the pre-trained model available here:
https://github.com/google/brain-tokyo-workshop/tree/master/AttentionAgent.

WorldModel The agent of Ha and Schmidhuber [43] first maps a top-down image of the car on
track via a variational autoencoder to a latent vector z. Given z, the world model M utilizes a
recurrent-mixture density network [12] to model the distribution of future possible states P(z¢11 |
at, zt, hy). Note that h, the hidden state of the RNN. Finally, a simple linear controller C' maps
the concatenation of z;, and h; to the action, a;. We use the pre-trained model available here:
https://github.com/hardmaru/WorldModelsExperiments/tree/master/carracing.
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