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Abstract— Despite the recent popularity of analyzing epi-
demic phenomena over networks, the budgeted control and
protection of networks from viral propagations is not widely
understood. In this paper, we blend methods from control
theory and robust optimization to create a framework for
network protection from epidemic environments using a limited
control budget. As our emphasis is on the application of these
methods to realistic contexts, our approach is designed to
work with arbitrary networks, and it incorporates both de-
centralization as well as robustness to uncertainties in network
topology. We illustrate tradeoffs between efficiency, robustness,
and decentralization with respect to network protection, and
we discuss methods that could build upon our framework to
mitigate these tradeoffs.

I. INTRODUCTION

The analysis of epidemic spreads in networks has gained
recent interest in a variety of application domains. In addition
to the obvious relevance to disease modeling and prevention,
other phenomena that can be analyzed under the same
theoretical framework include the spread of digital viruses,
backbone router faults, viral marketing campaigns, influence
in social media, and enterprise risk management.

Much of the existing literature on epidemic spreads
focuses either on developing models for epidemic pro-
gression or analyzing existing epidemic models in “pro-
totype” networks. In the former domain, the clas-
sic Susceptible-Infected-Recovered (SIR) and Susceptible-
Infected-Susceptible (SIS) models, originally employed for
aggregate populations without regard to any concept of
a network topology (e.g. [1]), have been generalized to
probabilistic models of infection over networks [2]–[4]. The
latter domain includes analyses over a variety of topologies
including infinite scale-free graphs [5], power-law graphs [6],
and Erdős-Rényi random graphs [7], [8]. Unfortunately, the
ability to rigorously analyze these structures often comes at
the expense of their validity to realistic networks.

While the analysis of epidemic spread models and asso-
ciated “prototype” networks serves important pedagogical
purposes, what is often more important in many contexts
is the ability to control epidemic spreads and/or protect
networks from these spreads. The aforementioned literature
on epidemic spreads, however, does not largely consider
control. Numerous studies have explored heuristic methods
[9], [10], and game theoretic analyses of strategies have
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also been applied to prototype networks [11]. However,
recent optimization-oriented approaches have had the most
success in controlling arbitrary directed networks composed
of heterogeneous individuals with respect to a limited control
budget [12]–[14]. Our approach identifies a framework that
can be solved using techniques of convex optimization and,
unlike previous approaches, systematically tackles issues of
scalability and robustness.

We consider the problem of controlling the dynamics of
interaction between a network and its environment in order
to protect the network from the propagation of an epidemic.
Similar to the optimization approaches in [12] and [13], our
model consists of an SIS probabilistic model of infection for
each agent within a network as well as an arbitrary directed
communication topology between agents. In addition to the
notion of a budget for our control policy, we require our
method to incorporate decentralization (for scalability) and
robustness to uncertainties in network topology, blending
ideas from control theory with those of robust optimization.
Together, these three characteristics of budget constraints,
decentralization, and robustness to uncertainty make our
proposed approach applicable to realistic scenarios.

This paper is organized as follows. In Sections II and III
we present our model and define the problem under consid-
eration. Subsequently, we outline our proposed approach in
Section IV and illustrate its performance experimentally in
Section V. We conclude with a review of our results, their
implications, and open questions for further investigation.

II. MODEL FRAMEWORK

A. System Dynamics

To capture the heterogeneity of realistic networks, we con-
sider a generalization of the SIS epidemic model presented
in [6] to include directed forms of interaction. Namely, we
consider a connected system of N nodes with state given by
s = [s1,s2, ...,sN ]

T ∈ {0,1}N . The boolean state si of node
i is 0 when i is uninfected and 1 when i is infected with
the contaminating virus. The structure of interaction between
nodes is governed by a directed graph G = {N ,E ,A}, where
N = {1,2, ...,N} is the set of nodes, E ⊆N ×N is the set
of edges, and A ∈ RN×N

+ is the adjacency matrix governing
the strength of interactions. In the context of epidemics,
[A]i j governs the spreading rate from node j to node i, so
it is reasonable to consider heterogeneous graphs in which
A 6= AT . A node cannot infect itself, so [A]ii = 0 ∀ i.

We model the health of the system as a continuous-time
Markov process: each healthy node becomes infected at
a rate proportional to the health of its neighbors and the
strength of its pairwise interactions with them. Furthermore,



each node i recovers at a rate ri > 0. Thus, the process is
modeled as follows:

si(t) :

{
0→ 1 at rate eT

i As(t)

1→ 0 at rate ri
(1)

where ei denotes the i-th unit vector. Because ri > 0, the
process has a unique absorbing state s= 0 that can be reached
with positive probability from any other state, and P(s(t) 6=
0) ∝ exp(−αt) for some α > 0 [15]. Our goal is to protect
this system from external threats. Thus, we now consider an
external environmental force.

B. Environmental Forcing

We add a forcing term to the homogeneous system above
in the form of an additional node that models the bulk envi-
ronmental behavior surrounding the local system.1 Defining
an (N + 1)-st state sN+1 := senv, the total state is now ŝ =
[sT ,senv]

T ∈ {0,1}N+1, and the dynamics can now be written
as follows (for i = {1,2, ...,N +1}):

si(t) :

{
0→ 1 at rate eT

i Âŝ(t)

1→ 0 at rate ri
(2a)

Â =

(
A b
0 0

)
. (2b)

where b ∈ RN
+ encodes the effects of the environment on

the system, and we assume that the environment is large
enough that senv is not affected by s. Importantly, we set
ri+1 := renv ∈ R+. In particular, we allow renv = 0 since the
environment need not be able to heal, in which case the local
system s has an absorbing state when b = 0 or senv(0) = 0.

We denote P(1T s(t) > 0) as the instantaneous “energy
of infection” at time t. We now show that we can upper
bound this quantity by the 2-norm of a variable with linear
dynamics.

Proposition 1: The Markov process dynamics (2) can be
bounded in the following sense:

P(1T s(t)> 0)≤
√

N‖z(t)‖2, (3)

where z(t) satisfies the following dynamics:

d
dt

z(t) = Dz(t)+be−renvtsenv(0), (4a)

z(0) = s(0), D = A−diag(r). (4b)
Sketch of Proof: Following a similar style to the proof

of Theorem 3.1 in [6], we introduce a new variable ŝd =
[(sd)T ,sd

env]
T ∈NN+1 that evolves according to the dynamics:

sd
i (t) :

{
j→ j+1 at rate eT

i Âŝd(t)

j→ j−1 at rate risd
i (t).

(5)

Define the following variables:

p(t) := E[s(t)], p̂(t) := E[ŝ(t)] (6a)

z(t) := E[sd(t)], ẑ(t) := E[ŝd(t)] (6b)

1Our approach can easily be generalized to multiple environmental nodes.

Then, p̂(t) and ẑ(t) evolve as follows:

d
dt

p̂(t) = D̂p̂(t)−E
[
diag(ŝ(t))Âŝ(t)

]
(7a)

d
dt

ẑ(t) = D̂ẑ(t) (7b)

D̂ =

(
D b
0 −renv

)
. (7c)

Note that diag(ŝ(t))Âŝ(t) � 0. Given equal deterministic
initial conditions, ŝd(0) = ŝ(0), we claim that

p̂(t)� ẑ(t), (8)

but we postpone its full proof (by analyzing the dynamics of
the difference between ẑ and p̂) for a more comprehensive
study. The intuition behind this argument is that sd

i leaves 0
at least as fast as si, and both variables fall back to 0 at the
same rate. By using this claim and applying the Markov and
Cauchy-Schwartz inequalities to the energy of infection, we
have:

P(1T s(t)> 0) = P(1T s(t)≥ 1)

≤ 1T p(t)
≤ 1T z(t)
≤
√

N ‖z(t)‖2 .

(9)

Using the equal deterministic initial conditions, we can easily
expand (7b) and (7c) into the final form (4). �

III. PROBLEM FORMULATION

We aim to control the effects of the environment on the
local system with a limited set of resources, i.e. a budget
constraint. The strength of node i’s interaction with the
environment is given by bi of b. We consider modifying
these values in a linear manner through a control vector v,
which results in a nontrivial problem if our budget does not
allow us to eliminate environmental interaction completely.
Including v, the dynamics are

d
dt

z(t) = Dz(t)+n(t) (10a)

n(t) = (b−v(t))e−renvtsenv(0). (10b)

Of course, in many realistic scenarios, v cannot be changed
continuously in time. Instead, we consider the scenario
where resources are reallocated at regular intervals h (i.e. v
is piecewise-constant). Defining the discrete-time variables
x(k) := z(kh) and w(k) := v(t), t ∈ [kh,(k+1)h), we have:

x(k+1) = Fx(k)+Gu(k) (11a)

F := ehD, G :=
∫ h

0
eD(h−τ)e−renvτ dτ (11b)

u(k) = (b−w(k))e−renvkhsenv(0) (11c)

0� w(k)� b, ‖w(k)‖1 ≤ c, (11d)

where (11d) denotes the constraints on our control input.
Control resources are nonnegative (0 � w), the total budget
per time period h is c, and the best that can ever be done is



to isolate the system from the environment (w � b). Our
objective is to minimize J, an upper bound on the total
integrated energy of infection of the system:

J =
√

N
∫

∞

0
‖z(t)‖2dt ≥

∫
∞

0
P(1T s(t)> 0)dt, (12)

which can be approximated by the following:

J ≈
√

N
T

∑
k=0
‖x(k)‖2 (13)

for small h and large T . As stated, this is a convex optimiza-
tion problem that can be solved using the receding-horizon
or model predictive control framework (MPC) [16] . In other
words, at time m, we solve the problem

minimize Jm :=
√

N
T+m

∑
k=m+1

‖x(k)‖2

subject to (11),

(14)

apply the policy values u(m), and then repeat for time
m + 1. The MPC framework allows us to easily account
for exogenous changes in model parameters such as renv by
updating values before solving the optimization problem for
successive time steps.

A. Decentralization and Robustness Requirements

For large networks (large N), the centralized approach
above can become highly inefficient and unrealistic, so we
seek a decentralized solution method that approximates the
centralized MPC method. Specifically, we consider the case
where the system is divided into M groups with Ni nodes
in the i-th group, such that ∑i Ni = N. We denote the state
of the i-th group as xi, so x = [(x1)T , ...,(xM)T ]T . Similarly,
each group i sets the corresponding elements of the control
vector ui via wi.2

Furthermore, we consider the situation where each group i
knows its intrinsic local dynamics but has uncertainty about
its interaction with neighboring groups. In other words, we
assume that the diagonal blocks Dii are known to each group
i, but the off-diagonal blocks Di j are known only within
a certain uncertainty region to groups i and j (i 6= j). In
addition to the decentralization requirement stipulated above,
our control policy should also be robust to these uncertainties
in group-wise interactions.

IV. PROPOSED APPROACH

We tackle the issues of decentralization and robustness
to uncertainty through the use of reduced-order models and
techniques from robust optimization.

A. Reduced-Order Models

A naive approach to ensuring decentralization is to allocate
a fraction of the total budget to each group and have it ignore
interactions with other groups when choosing a control
policy. This can be highly suboptimal. On the other hand,
making each group find a solution with respect to the entire

2We can write equivalent expressions zi, ni, and vi for the continuous-
time dynamics.

matrix D defeats the purpose of decentralization, i.e. that
each group solves a smaller, more manageable problem.
Thus, we allow each group to account for its interactions
with others via reduced-order models, with inherent tradeoffs
between the degree of decentralization (corresponding to the
size of the reduced-order models) and the accuracy of each
group’s corresponding model.

Although this approach can work for arbitrary M, we
describe the case with M = 3 for simplicity. We postpone
analysis of uncertainties in Di j until Section IV-B. For all
subsequent analysis, we assume that Dii is Hurwitz ∀ i, i.e.
that the local system needs protection or isolation from the
environment and not from any of its own nodes. Without loss
of generality, any unstable components of the local system
can simply be modeled as part of the environment.

Consider the local continuous dynamics for the first group.
The state-space system can be summarized by the following:

S1 =

[
D11 (D12, D13, I)

I

]
(15)

with state z1 and input [(z2)T ,(z3)T ,(n1)T ]T . A variety of
methods can be used to perform model reduction, reducing
the state of system i to size ki� Ni, such as using balanced
truncation or via a Hankel-norm approximation [17]–[19].
Either of these methods involves finding the controllability
and observability gramians (W 1

C and W 1
O respectively). Note

that both W i
C and W i

O are positive definite, since all Dii are
Hurwitz and the input/output matrices of Si are full rank.
Namely, W 1

C and W 1
O solve the following Lyapunov equations

(with similar expressions for the other groups):

D11W 1
C +W 1

C DT
11 +(D12, D13, I)(D12, D13, I)T = 0 (16a)

DT
11W 1

O +W 1
OD11 + I = 0. (16b)

We omit a derivation of the well-known model reduction
procedure (see, e.g., [17]–[19]). However, we note that the
reduced system is developed through a transformation anal-
ogous to a standard similarity transformation. Specifically,
the reduced system for the first group is

S̃1 =

[
T T

L D11TR T T
L (D12, D13, I)

TR

]

:=

[
D̃11

(
D̃12, D̃13, B̃1

)
C̃1

] (17)

corresponding to the reduced state z̃1, where TL and TR are
developed via manipulations of the singular value decom-
position for W 1

CW 1
O [17]. The initial condition is given by

z̃1(0)= B̃1z1(0).3 It is helpful to think of B̃1 and C̃1 behaving
as compression and expansion operators respectively. When
reduced to order ki, the relative error of the associated
transfer function, denoted as S̃i( jω), is proportional to the
sum of the Ni− ki smallest Hankel singular values:∥∥Si− S̃i∥∥

∞
≤ 2

Ni

∑
p=ki+1

σ
i
p (18a)

3Note that B̃ = (C̃)†, where (·)† is the Moore-Penrose pseudoinverse.



σ
i
p =

√
λp(W i

CW i
O), (18b)

where λp(A) is the p-th largest eigenvalue of positive
semidefinite matrix A. Intuitively, the reduced-order system
captures the modes of behavior that interact the most with
other groups and the environment (i.e. the most control-
lable/observable modes). In another sense, (18) captures the
tradeoff between decentralization and the accuracy of the
models used for developing control policies.

Now we employ these reduced models to incorporate the
dynamics of groups 2 and 3 into group 1’s optimization.
Specifically, the first group considers the reduced state z1

r =
[(z1)T ,(z̃2)T ,(z̃3)T ]T as well as a reduced input n1

r evolving
according to the following state-space dynamics:

d
dt

z1
r (t) = D1

r z1
r (t)+n1

r (t) (19a)

D1
r = B1

r DC1
r (19b)

n1
r (t) = (B1

r b−v1
r (t))e

−renvtsenv(0) (19c)

B1
r = diag

(
I, B̃2, B̃3) , C1

r = diag
(
I, C̃2, C̃3) , (19d)

where diag(·) forms a block diagonal matrix from its matrix
arguments, and v1

r is the reduced control input corresponding
to n1

r . Defining appropriate discrete-time counterparts, group
1 solves the following optimization problem at time step m:

minimize J1
m :=

√
N

T+m

∑
k=m+1

‖x1
r (k)‖2

subject to

x1
r (k+1) = F1

r x1
r (k)+G1

r u1
r (k),

F1
r := ehD1

r , G1
r :=

∫ h

0
eD1

r (h−τ)e−renvτ dτ,

u1
r (k) = (B1

r b−w1
r (k))e

−renvkhsenv(0)

0�C1
r w1

r (k)� b,
∥∥C1

r w1
r (k)

∥∥
1 ≤ c,

(20)

The main difference with the formulation in Section III is
that the dynamics of (10) are replaced by those of (19), which
includes a reduction of the environmental and control inputs
for other groups.4 Groups 2 and 3 use similar reduced-system
dynamics to minimize J2

m and J3
m, and during each step of

the decentralized MPC scheme, each group i only enacts its
local portion of ui

r.
The level of communication required between groups

depends on the precision with which we wish to carry out this
decentralized scheme. The initial communication of reduced
models as well as initial conditions for reduced states is
required, after which no communication is necessary. To im-
prove precision, however, we can allow the communication
of reduced states between each time step to “reset” each local
receding-horizon scheme with the proper initialization.

Finally, we observe that the collective budget constraint
‖w(k)‖1 ≤ c is not necessarily satisfied under this scheme,
since we combine policies from each group to form the col-
lective policy. In this study, we consider the simple approach

4If the local system is still too large, we can set z1
r =

[(z̃1)T ,(z̃2)T ,(z̃3)T ]T , i.e. use a reduced form of group 1’s own dynamics.

of scaling the collective policy w by c/‖w‖1 when necessary,
which requires a sufficiently small amount of communication
between groups at each time step. More rigorous approaches
to optimally partitioning group budgets in a decentralized
manner are under further investigation.

B. Incorporating Robustness Against Uncertainties

Now we consider the robust counterpart to the MPC
scheme above that accounts for uncertainties in Di j. The
tractability of such a robust optimization problem rests on
the uncertainty set Di j. We employ the so-called “scenario”
or polytopic uncertainty set, wherein each Di j is a convex
combination of a finite set of matrices:

Di j = {Di j|Di j =
Li j

∑
k=1

µkDi j(k), µk ≥ 0,
Li j

∑
k=1

µk = 1}, (21)

where Li j is the number of matrices making up the vertices
or “corners” of the uncertainty set, and Di j(k) is the k-
th vertex or “corner” case of this set. We need to create
robust counterparts for both model reduction as well as
the optimization problem (20). For model reduction, we
employ generalized balanced truncation, which replaces the
Lyapunov equation for the controllability gramian with a
linear matrix inequality (LMI) [20]. For example, using
M = 3 as above, we find a (non-unique) V 1

C satisfying:

D11V 1
C +V 1

C DT
11 +(D12, D13, I)(D12, D13, I)T � 0, (22)

and the corresponding errors for the reduced models are [20]:

‖Si− S̃i‖∞ ≤ 2
Ni

∑
p=ki+1

γ
i
p (23a)

γ
i
p =

√
λp(V i

CW i
O)≥ σ

i
p. (23b)

Proposition 2: Define the matrix B(i, j) as the following:

B(i, j) := (D12(i),D13( j)) . (24)

where i ∈ {1, ...,L12} and j ∈ {1, ...,L13}. Furthermore, de-
fine L1 := L12L13 as the total number of such matrices. Then
given a matrix V 1

C � 0, feasibility of (22) for all (D12,D13)∈
D12×D13 is implied by the feasibility of the following:

D11V 1
C +V 1

C DT
11 + I +L1B(i, j)B(i, j)T � 0 ∀ (i, j) (25)

Sketch of Proof: Note that D12×D13 is the convex hull
of all B(i, j) matrices. That is, ∀ (D12,D13) ∈D12×D13:

(D12,D13) = ∑µi jB(i, j), µi j ≥ 0, ∑µi j = 1. (26)

Now consider any general matrix X ∈ Rm×n which can be
written as a convex combination of K matrices:

X =
K

∑
i=1

νiXi, νi ≥ 0,
K

∑
i=1

νi = 1. (27)

Since (νiXi−ν jX j)(νiXi−ν jX j)
T � 0, we have:

ν
2
i XiXT

i +ν
2
j X jXT

j � νiν j
(
XiXT

j +X jXT
i
)
. (28)



Then,

XXT � K
K

∑
i=1

ν
2
i XiXT

i � K
K

∑
i=1

νiXiXT
i , (29)

where the latter inequality follows from the fact that νi ∈
[0,1]. Now, assume that we have the following:

Y +KXiXT
i � 0 ∀ i. (30)

Taking a convex combination of these inequalities yields:

Y +K
K

∑
i=1

νiXiXT
i � 0 =⇒ Y +XXT � 0. (31)

Substituting D11V 1
C +V 1

C DT
11 + I for Y , L1 for K, B(i, j) for

Xi, and µi j for νi, we readily observe that (25) =⇒ (22). �
Although (25) is the robust counterpart of the specific LMI

(22) for group 1 with M = 3, the result is completely general.
In other words, to find V i

C satisfying

DiiV i
C +V i

CDT
ii +(B, I)(B, I)T � 0, (32)

∀ B ∈ ∏ j 6=i Di j, it is sufficient to simultaneously satisfy Li
“corner case” LMI’s equivalent to (25), where Li is the
number of “corners” of the set ∏ j 6=i Di j.

To generate a robust counterpart of the optimization prob-
lem (20), we first recognize that, since all Dii are fixed and
D̃i j are simply linear functions of Di j, we can parametrize Di

r
by Di j ∀ i 6= j. Thus the uncertainty set D i

r is parametrized by
the Cartesian product ∏i 6= j Di j, which has L := ∏i Li vertices
or corner cases, denoted by Di

r(p), p∈ {1, ...,L}. We denote
F i

r (p) as F i
r evaluated with the corner case Di

r(p).
The robust counterpart to (20) can be written as a second-

order cone program (SOCP) if we can write xi
r(k) as an

affine function of Di
r. This can be approximated by Taylor-

expanding the objective. Specifically, we assume that h is
small enough that all terms greater than first-order in (hDi

r)
and second-order in (renvh) are negligible. Then we can write
the following approximations (which are valid for any renv):

(F i
r )

k ≈ I + khDi
r (33a)

(F i
r )

kGi
r ≈ aI +bDi

r (33b)

a := h
(

1− renvh
2

)
, b := h2

(
1
2
+ k
(

1− renvh
2

))
(33c)

With this expansion, we minimize supDi
r
Ji

m by solving the
following SOCP with auxiliary variable g ∈ RT

+ [21]:

minimize ‖g‖1

subject to (33),∥∥∥∥∥F i
r (p)k−mxi

r(m)+
k−1

∑
τ=m

F i
r (p)k−1−τ Gi

ru
i
r(τ)

∥∥∥∥∥
2

≤ gk−m

ui
r(k) = (Bi

rb−wi
r(k))e

−renvkhsenv(0),

0�Ci
rw

i
r(k)� b,

∥∥Ci
rw

i
r(k)

∥∥
1 ≤ c,

∀ k ∈ {m+1, ...,T +m}, p ∈ {1, ...,L},

(34)

where the expressions inside ‖·‖2 are the discrete convolution
expansions for xi

r(k). Thus, using polytopic uncertainties

requires the one-time communication of uncertainty sets
between nodes (along with reduced-order models) at the
beginning of the optimization procedure.

Polytopic sets certainly appear to be the simplest form
of characterizing uncertainties in Di j. However, we observe
that this simplicity of expression for the robust counterparts
to the LMI (16a) and MPC (20) problems comes at the
expense of their computation: the number of LMIs needed
to robustly reduce models and the number of constraints
needed to robustly minimize Ji

m grow exponentially in M
and M2 respectively (assuming the constraint sets are un-
correlated). This fact underlies the necessity of considering
other uncertainty sets, such as norm-bounded uncertainties.
More tractable uncertainty sets have the potential to assuage
the tradeoff we observe between scalability and robustness.

V. EXPERIMENTAL EVALUATIONS

We consider a model system of N = 24 nodes and M = 3
groups of equal size Ni = N/M. We generate adjacency
matrices A and recovery rates r uniformly at random and
scale them such that λi(D) ∈ [−1,−0.33]. Furthermore, we
choose senv(0) = 1 and renv = 0.2 such that the environment
heals (i.e. it is asymptotically stable), but it dies at a slower
rate than the local system. Thus, control in the form of
protection from the environment can accomplish something
meaningful for this system, particularly at early times. We set
h = 0.05, T = 20. Finally, the environmental forcing vector
b is chosen with random elements, but the magnitudes of
environmental interaction with half of the nodes in groups
1 and 2 are set substantially higher than for all other nodes.
This makes some degree of cooperation between groups
imperative for system-wide success. We assume that the
groups have no a priori knowledge of this heterogeneity.

Each Di j is assumed to be the convex combination of
three possible “corner” matrices. For simplicity, we introduce
correlations between the uncertainty sets. Specifically, we
assume that all uncertainty sets Di j ∀ i 6= j are perfectly
correlated, so that the matrix D is a convex combination
of three “corner” cases. This reduces the effective number
of vertices in D i

r from 729 to 3.
We evaluate our approach with numerous sizes of reduced

models ki = {0,2,4,6,8}. Note that ki = 8 corresponds to the
global centralized solution. The case of ki = 0 corresponds
to almost complete anarchy; each group ignores the others
and assumes it has access to the entire budget, but the
collective policy is scaled if it is too large (as mentioned in
Section IV-B). We compare these policies with two baseline
cases: no control input and complete anarchy. In complete
anarchy, each group assumes it is isolated from the others
and has access to a fixed share c/M of the budget. This
corresponds to the aforementioned situation where there is
no prior knowledge for the extent to which the environment
interacts with each group.

In all models, the actual state dynamics between MPC
iterations are updated through a specific D matrix that is
unknown to any of the controllers. Figure (1) shows (the
upper bound on) instantaneous energy of infection over time
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Fig. 1. Comparison of the effects of policies on instantaneous energy of
infection. The major benefits of communication occur at early times since
the environment and network are both asymptotically stable. Communication
and dynamic budget allocation between groups assuage the severity of
“overshoot” before asymptotically approaching a state of zero energy. Larger
ki results in better performance.

for all MPC policies. Despite the fact that the environment
is asymptotically stable, there is a dramatically unfavorable
interaction with the system at early times in the case of no
control. This highlights the necessity of protection from the
environment, even in situations without instability. Increasing
the order of reduced models improves performance and
reduces the magnitude of “overshoot” before approaching
a zero-energy state. Nevertheless, larger ki implies less
decentralization and larger optimization problems.

As expected, dynamically allocating resources between
groups has a major impact on performance: the complete
anarchy case with an equal partitioning of resources is signif-
icantly worse than all of the cases with ki≥ 0. This motivates
the need for further analysis into dynamically allocating
budgets heterogeneously without sacrificing decentralization.
Doing so will help push the performance of decentralized
models closer to the centralized limit.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a framework to protect an arbitrary
network from viral propagations, subject to limited resources,
varying degrees of decentralization, and uncertainties in
network topology. Specifically, our approach combines tech-
niques of receding-horizon control with those of model
reduction and robust optimization. Our theoretical and empir-
ical analyses reveal tradeoffs between efficiency and robust-
ness as well as decentralization and optimality. Mitigating
or assuaging these tradeoffs is the subject of further inves-
tigation. In particular, future work aims to provide upper
bounds on errors of group dynamics with multiple reduced-
order models, consider more scalable types of uncertainty
sets, analyze dynamic schemes for optimally partitioning
budgets between network groups, and incorporate dynamic
network topologies. Doing so will extend the applicability of
our framework to realistic systems.
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[6] A. Ganesh, L. Massoulié, and D. Towsley, “The effect of network
topology on the spread of epidemics,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings IEEE, vol. 2. IEEE, 2005, pp. 1455–1466.

[7] J. O. Kephart and S. R. White, “Directed-graph epidemiological
models of computer viruses,” in Research in Security and Privacy,
1991. Proceedings., 1991 IEEE Computer Society Symposium on.
IEEE, 1991, pp. 343–359.

[8] D. J. Watts, “A simple model of global cascades on random networks,”
Proceedings of the National Academy of Sciences, vol. 99, no. 9, pp.
5766–5771, 2002.

[9] R. Cohen, S. Havlin, and D. Ben-Avraham, “Efficient immunization
strategies for computer networks and populations,” Physical review
letters, vol. 91, no. 24, p. 247901, 2003.

[10] F. Chung, P. Horn, and A. Tsiatas, “Distributing antidote using
pagerank vectors,” Internet Mathematics, vol. 6, no. 2, pp. 237–254,
2009.

[11] Y. Hayel, S. Trajanovski, E. Altman, H. Wang, and P. Van Mieghem,
“Complete game-theoretic characterization of sis epidemics protection
strategies,” in Decision and Control (CDC), 2014 IEEE 53rd Annual
Conference on. IEEE, 2014, pp. 1179–1184.

[12] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J.
Pappas, “Optimal resource allocation for network protection against
spreading processes,” Control of Network Systems, IEEE Transactions
on, vol. 1, no. 1, pp. 99–108, 2014.

[13] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas,
“Optimal vaccine allocation to control epidemic outbreaks in arbitrary
networks,” in Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on. IEEE, 2013, pp. 7486–7491.

[14] E. Gourdin, J. Omic, and P. Van Mieghem, “Optimization of network
protection against virus spread,” in Design of Reliable Communication
Networks (DRCN), 2011 8th International Workshop on the. IEEE,
2011, pp. 86–93.

[15] P. Bremaud, Markov chains: Gibbs fields, Monte Carlo simulation,
and queues. Springer Science & Business Media, 1999, vol. 31.

[16] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
theory and practicea survey,” Automatica, vol. 25, no. 3, pp. 335–348,
1989.

[17] M. Safonov and R. Chiang, “A schur method for balanced model
reduction,” in American Control Conference, 1988. IEEE, 1988, pp.
1036–1040.

[18] K. Glover, “All optimal hankel-norm approximations of linear multi-
variable systems and their l, -error bounds,” International journal of
control, vol. 39, no. 6, pp. 1115–1193, 1984.

[19] M. Safonov, R. Chiang, and D. Limebeer, “Optimal hankel model
reduction for nonminimal systems,” Automatic Control, IEEE Trans-
actions on, vol. 35, no. 4, pp. 496–502, 1990.

[20] G. Dullerud and F. Paganini, A Course in Robust Control Theory: A
Convex Approach. Springer-Verlag New York, 2000.

[21] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization.
Princeton University Press, 2009.


