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Abstract

The analysis of noisy consensus dynamics in networks is of great interest to both
advance the fundamental understanding of multi-agent systems in nature as well as
create robust decentralized engineering systems. We develop a protocol that heuristi-
cally attempts to optimize metrics of consensus dynamics without explicitly measuring
a network’s global properties. Adopting the approach of utility maximization by nodes
in a network, we allow nodes to modify connections with their neighbors over time.
This results in a locally adaptive network: the global graph structure updates through
the collective action of local changes, and no node has any knowledge of this evolution
beyond its effects on the node’s local environment. Our research focuses specifically on
developing the form of this utility function to (heuristically) optimize network perfor-
mance with respect to noisy consensus dynamics.

Beginning with a utility function inspired by economic and sociological models for
network behavior, our analysis discovers the importance of coupling state and network
dynamics to enhance consensus performance. Consequently, we develop the "perceived
intelligence" coupling factor which creates a positive feedback between the state dy-
namics and network structure: nodes gravitate towards smart individuals who appear
to be close to the final consensus state. Results indicate that this feedback reduces
overshoot in the state dynamics and improves the convergence speed and robustness of
consensus, but it induces heavy oscillations in network structure as individuals swing
between smart individuals. Therefore, we sophisticate the model by introducing "intel-
ligence history," a recursive estimation scheme for perceived intelligence that dampens
the positive feedback, thereby reducing swings in network structure. With the addi-
tion of perceived intelligence and intelligence history, our protocol greatly outperforms
the original utility model, especially when network costs are taken into account in the
metrics of consensus performance. Overall, the protocol appears to be a very capable
heuristic for maximizing consensus performance in the presence of noise, and it is easily
adaptable to a variety of applications.
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1 Introduction

Characterizing the dynamics of multi-agent systems (MAS) and their performance towards a
goal presents challenging problems for theoretical and computational analysis. Such systems
consist of multiple interacting agents within an environment. Individual agents generally
have a limited knowledge of their external environment and can interact in a limited fashion
with other agents in the system. MAS are ubiquitous in nature and they dominate the realm
of biological phenomena, from the macroscopic (flock migrations, honeybee swarms, and
human social networks) to the microscopic (bacterial growth and intracellular phenomena).
In addition, MAS have numerous scientific and engineering applications, particularly in
domains where a centralized approach might be costly or intractable (automated disaster
response or high-frequency trading in financial markets).

Within the MAS field, consensus dynamics studies networked agents working towards a
common goal (i.e. tracking a reference signal or evading a predator). This particular focus
has direct applications such as the optimization of distributed autonomous sensing networks
or large-scale energy systems. The ability to reach consensus and the "quality" of this state
(i.e. its stability, speed of convergence, and/or error with respect to a reference) depend on
the network topology, the initial conditions of the system, the disturbances or noise inherent
in the system, and the consensus protocol, which characterizes the network’s evolution from
initial conditions. Recent research efforts in consensus dynamics have studied various aspects
of these factors, such as the effects of network topology on robustness of consensus to noise
[16, 17] and the convergence speed of distributed consensus protocols [8]. Interesting results
in the creation of robust network topologies have also been determined from the study of
biological systems such as starling flocks [15].

Many studies in consensus dynamics focus on static network topologies due to greater analyt-
ical tractability. However, it is evident from even a cursory knowledge of biological systems,
such as human social networks or flock migrations, that these types of network structures
evolve or adapt with time. This evolution plays a large role in system performance with
respect to consensus dynamics. Following the model of [15] and seeking inspiration from
biological systems, current research focuses on the role of locally evolving topologies as a
component of the individual consensus protocol for each agent (i.e. the distributed con-
sensus protocol). In other words, we allow each agent to change the way it interacts with
its neighbors regarding information retrieval and submission, thereby allowing the overall
network structure to change with time. This makes the network locally adaptive. Local-
ity of network evolution is of utmost importance for our research; this constraint preserves

1 Princeton University
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the sense of decentralization that differentiates MAS from more centralized schemes. From
another perspective, imposing locality can also be considered realistic for many biological
phenomena and engineering applications; it is likely that agents do not (or only intermit-
tently) have the ability to measure global properties of the network, but they can determine
local performance by interacting with neighbors. This locality limitation is not as crippling
as it may initially seem. Even in physical systems, a neighbor need not be defined as an
agent that is in close physical proximity to another agent. Abstracting the system as a
graph of nodes and edges, neighbors are defined as nodes that are directly connected by
an edge. Performance is driven by the network structure in topological space rather than
application-specific metric spaces.

1.1 Objectives and Approach

In a framework where the distributed consensus protocol specifies only the behavior of in-
dividual agents with regard to their local environments, it is important to understand how
local behavior affects global behavior. This study researches distributed consensus protocols
that prescribe local network changes and analyzes the resulting effects on global performance
with respect to noisy consensus dynamics. In other words, we examine noisy consensus dy-
namics in locally adaptive1 networks using distributed consensus protocols. The analysis of
this local/global correspondence is twofold: the first aspect involves defining the distributed
consensus protocol and determining its effect on the (possibly steady-state) structure of the
network; the second aspect involves analyzing the resulting structure with respect to metrics
of global performance (i.e. robustness, stability, convergence speed, etc.).

The development of distributed consensus protocols has received considerable attention by
various literatures including those of economics, control theory, game theory, and operations
research. Current analysis combines the conventions and methodologies of control theory
with models that resemble standard economic frameworks of utility maximization by indi-
viduals. Other approaches include system identification through machine learning [3] or the
classic multi-armed bandit framework for researching explore/exploit situations [13]. The
study of such approaches in the context of consensus dynamics is worth further research, but
we do not focus on them here.

The remainder of this report is organized as follows. First, relevant background is presented
regarding the motivation for the problem under consideration, followed by notation and
preliminary material for analyzing noisy consensus dynamics. Section 2 presents a model
for utility maximization, and Section 3 analyzes its performance with respect to consensus

1The term "locally adaptive" refers to the fact that the network structure evolves locally with time.

2 Princeton University
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dynamics. Subsequently, we present a series of improvements to this utility model in Section
4 and characterize the performance of the updated models with respect to the original. The
study is concluded with a review of the results, their implications, and open questions for
future investigation.

1.2 Background

Comprehensive analysis of noisy consensus dynamics requires relevant background to in-
troduce the problem and the associated measures for network performance. Section 1.2.1
motivates the overall approach presented in Section 1.1, and the subsequent material illus-
trates how to characterize the performance of multi-agent systems with respect to noisy
consensus dynamics.

1.2.1 Motivation: Imperfect Information in Economic Markets

It is reasonable to ask whether or not the objectives presented in Section 1.1 are worth merit,
i.e. whether the problem of reaching consensus through a distributed consensus protocol in
the presence of noise is nontrivial. The most immediate answer (which is resoundingly affir-
mative) derives from economic literature. The model of an economic market is not very dif-
ferent from that considered here for consensus dynamics in MAS, particularly in the context
of consensus protocols that involve local utility maximization. Indeed, an economic market
consists of individuals maximizing utility (often subject to a budget constraint for consumers
or a production constraint for producers). The First Welfare Theorem of Economics states
that perfectly competitive markets2 will reach Pareto-efficient3 states in equilibrium (see
[9] for a semi-rigorous proof). This result is often cited as an analytical confirmation for
economist Adam Smith’s famous "invisible hand" hypothesis on the self-regulatory nature
of economic markets. However, the ideal conditions required by the First Welfare Theorem
do not always hold in real economic markets. Namely, markets fail to reach Pareto-efficient
states in the presence of imperfect competition (when individuals have market power to set
prices such as in the case of a monopoly), externalities (interactions between individuals that
are not adequately reflected by market prices), public goods (goods that are non-excludable
and non-rivalrous such as fresh air or national defense), and imperfect information. The
final factor, imperfect information, is particularly relevant to the noisy consensus dynamics
problem presented in Section 1.1. As we show in Section 1.2.2, under certain conditions

2Perfect competition prescribes the inability of any individual or group to have the power to set prices
or unfairly take advantage of others. In other words, there are no monopolies, oligopolies, or any types of
information asymmetry between economic players.

3Pareto efficiency is the inability for any individual to increase utility without decreasing the utility of
another. It is a local optimum in the space of resource allocations that maximize individuals’ utility functions.

3 Princeton University
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a network can be guaranteed to asymptotically reach consensus in the absence of noise, a
reflection of the First Welfare Theorem. On the other hand, noise corrupts the information
passed between neighbors and prevents such convergence. Whereas economies often resort to
centralized measures such as government regulation to deal with factors that prevent Pareto
efficiency, current research aims to retain the distributed, decentralized nature of the system.
We study the ability of the system, as governed by the decentralized consensus protocol and
network topology, to cope with noise corruption. From an economic perspective, this is
equivalent to studying a market’s innate ability to deal with imperfect information without
intervention by any other agent. In this way, the objectives presented in Section 1.1 set up
a nontrivial and rich problem.

1.2.2 Model for Consensus Dynamics in Multi-Agent Systems

The model presented here is widely used throughout control-theoretic literature. Our nomen-
clature derives from that presented in [15, 16, 17]. We consider a system of N agents such
that the state of the network is represented by x = [x1, x2, ..., xN ]T ∈ RN . Then the system
is in consensus when x = α1N , where 1N = [1, 1, ..., 1]T ∈ RN and α ∈ R. Alternatively,
we can define the subspace orthogonal to 1N as Π = IN − 1

N
1N1

T
N , where IN is the identity

matrix. The consensus state satisfies Πx = 0.

Graph Structure and Nomenclature The network structure is defined by a directed
graph, G = (V,E,A), where V = {1, 2, ..., N} is the set of nodes that represent agents,
E ⊆ V × V is the set of edges that represent neighborly connections, and A ∈ RN×N is the
weighted adjacency matrix defining the weight of each neighborly connection. Specifically,
every entry aij in A is nonnegative, and aij > 0 ⇐⇒ (i, j) ∈ E. Directed edges point
from receivers of information to senders: aij points from node i (the receiver) to node j
(the sender). In other words, the directed edges leaving node i define agent i’s neighbors
(agents that agent i observes) and aij is the weight with which agent i gives to neighbor j’s
information. We prescribe that there exist no self-cycles: aii = 0 ∀ i ∈ V . The weighted
outdegree of node i is defined as douti =

∑
j aij and the weighted indegree by dini =

∑
j aji.

Finally, a path in G represents a directed sequence between nodes along directed edges. The
graph G is called connected if there exists some node that is reachable by a path from any
other node. We prescribe that networks are connected for further analysis, as this has great
ramifications on system dynamics.

The dynamics of network evolution are governed by the Laplacian of G, defined as L = D−A,
where D is a diagonal matrix with douti as the ith diagonal entry. Note that the row sums of
L are 0, so 1N is an eigenvector of L with eigenvalue 0 (L1N = 0). Furthermore, 0 is a simple

4 Princeton University



MAE 442 Distributed Consensus Protocols May 2, 2013

eigenvalue (multiplicity of 1) if and only if G is connected (Theorem 4 of [1]). Application of
the fiendishly simple Gershgorin Circle Theorem (Theorem A.1 of Appendix A) shows that
all eigenvalues λ of L satisfy Reλ ≥ 0. To normalize the magnitude of the eigenvalues with
respect to aij, we define a normalized Laplacian (L̂) as one in which the diagonal entries
are either 0 or 1. Therefore, L̂ij = Lij/d

out
i . The intuition behind this normalization is that

only the relative magnitudes of aij should affect the dynamics in x. This implies that an
isolated network of highly social individuals could have the same x dynamics as one with
more introverted individuals; a uniform scaling in aij has no effect on ẋ. The majority of
this study is focused on evaluating techniques that dynamically change the edge weights aij
with time along with the state (L̇ 6= 0).4

Noisy Consensus Dynamics and Convergence Speed Noise corrupts the information
flow between along edges either from output noise from the sender, measurement noise by
the receiver, disturbances, or a combination of all corrupting phenomena. Following [16], we
consider uniform white noise across all nodes. Therefore, we define the network evolution
for a static network structure (L̇ =

˙̂
L = 0) as:

ẋ(t) = −L̂x(t) + ξ(t) (1.1)

where ξ(t) ∈ RN is a random signal satisfying the usual properties for white noise: E[ξ(t)] =

0, E[ξ(t)ξT (τ)] = η2INδ(t − τ), and E[x(0)ξT (τ)] = 0, where the autocorrelation intensity
of noise is prescribed by η.

The system defined above is only marginally stable: one eigenvalue is 0 and all others are
below 0 for the matrix −L̂.5 Because the marginally stable state is the consensus state, it
is conceivable that we may only need to look only at the system dynamics along the space
spanned by Π, the dispersion of the system from equilibrium.6 Namely, we define a (non-
unique) matrix Q with rows forming an orthonormal basis for Π: Q1N = 0, QQT = IN−1,
and QTQ = Π. The dispersion is then defined as

√
yT (t)y(t), where y := Qx. This results

4Note that L̇ 6= 0 6=⇒ ˙̂
L 6= 0. One simple example is the case of edge weights that scale uniformly over

the entire graph (ȧij = c, where c is a constant).
5As noted earlier, we only consider connected network topologies in this study, which is why 0 is a simple

eigenvalue. As we will later show, unconnected network topologies correspond to non-collaborative systems
in which consensus is virtually impossible.

6The dynamics projected onto 1N characterize the mean state of the system, which is marginally stable.
Current research does not analyze the ability of the system to reach a certain value at the consensus state,
but rather studies the performance of the system in purely reaching and/or maintaining a consensus state.
This analysis can be generalized to the former scenario in numerous ways. One method would be to augment
the network with "leader" nodes who track an exogenous signal.

5 Princeton University
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in the reduced system dynamics:

ẏ(t) = −QL̂QTy(t) +Qξ(t) = −L̄y(t) +Qξ(t) (1.2)

where L̄ is the reduced normalized Laplacian of the system [16]. SinceQ is not unique, neither
is L̄. However, for any second parametrization y′ and Q′, we find that y′Ty′ = (Q′x)TQ′x =

(Q′QTy)TQ′QTy = yTy, so the dispersion is the same [16]. Importantly, the eigenvalues of
L̄ are the nonzero eigenvalues of L̂ for a connected graph, whereby the dispersion dynamics
are stable [16]. The speed of convergence is then dominated by the slowest eigenmode, so
we define the convergence speed as the real part of the smallest eigenvalue in L̄. As this
asymptotic stability is a key result for further analysis, we review the proof here [16]:
Theorem 1.1. The eigenvalues of L̄ are the nonzero eigenvalues of L̂ for a connected graph.

Proof. Define the orthogonal change of basis:

V =

[
Q

1√
N
1TN

]

Then the system dynamics (i.e. the eigenvalues) of matrix V L̂V T must be the same as those
of L̂. However, the new matrix has the following block triangular structure:

V LV T =

[
L̄ 0N−1

1√
N
1TN L̂Q

T 0

]

so its eigenvalues are the union of the eigenvalues of L̄ and zero. Since zero is a simple
eigenvalue of L̂, L̄ has the nonzero eigenvalues of L̂.

Robustness of Consensus Noise perturbs the system and prevents it from reaching con-
sensus otherwise guaranteed by the reduced system’s asymptotic stability. The robustness of
consensus with respect to noise can be defined through different types of norms such as the
H2- and H∞-norms. Whereas the H2-norm characterizes the output energy for a system due
to a unit level disturbance, the H∞-norm characterizes the maximum magnitude of response
(or maximum amplification) of noise possible in a system. Current research will focus on the
H2-norm (abbreviated as H2).

Consider a generic asymptotically stable contious time linear-time-invariant multiple-input-
multiple-output (CTLTI-MIMO) dynamical system with state x, (disturbance) inputs w,

6 Princeton University
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and output y:7

ẋ = Ax +Bw (1.3a)

y = Cx (1.3b)

G(s) = C(sI − A)−1B (1.3c)

g(t) = L−1 {G(s)} = CeAtB (1.3d)

where Equation 1.3c is the transfer function of the system, and Equation 1.3d is its corre-
sponding inverse Laplace transform (the impulse response). Then, the square of the H2-norm
(H2

2 ) can be defined in the following equivalent ways using the transfer function or the im-
pulse response:

H2
2 =

1

2π
tr

[∫ ∞
−∞

G(jω)G∗(jω)dω

]
= tr

[∫ ∞
0

g(t)gT (t)dt

]
= tr

[
BTWOB

]
,WO =

∫ ∞
0

eA
T tCTCeAtdt

=
1

2π
tr

[∫ ∞
−∞

G∗(jω)G(jω)dω

]
= tr

[∫ ∞
0

gT (t)g(t)dt

]
= tr

[
CWCC

T
]
,WC =

∫ ∞
0

eAtBBT eA
T tdt

(1.4)

where the conversion from time domain to frequency domain is permissible by Parseval’s
Relation. WO and WC are the observability and controllability Gramians, which are the
solutions to the following dual Lyapunov equations:8

ATWO +WOA+ CTC = 0 (1.5a)

AWC +WCA
T +BBT = 0 (1.5b)

The reduced consensus dynamics system can be rewritten in the following way (for static

7The x and y variables here are named as such merely as dictated by convention. They do not correspond
to the network state and consensus dispersion state introduced for the consensus dynamics problem.

8In discrete-time systems, these equations are slightly modified: ATWOA−WO+CTC = 0 and AWCA
T−

WC +BBT = 0.

7 Princeton University
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network structures):
ẏ = −L̄y +Qξ (1.6a)

z = IN−1y (1.6b)

Then, the H2-norm is
√

tr [IN−1PIN−1] =
√

trP , where L̄P + PL̄T − IN−1 = 0. However, it
is also possible to arrive at this result in a slightly more direct fashion that gives meaning
to P [16]. Loosely speaking, robustness is measured by the "energy" of the output, so it
reasonable to consider the expected value of the output over all time due to a disturbance:
limt→∞E[‖y‖] =

√
tr Σss, where Σss = limt→∞Σ(t) := limt→∞E[y(t)yT (t)]. Calculating

Σ̇(t) and setting it to 0 as t → ∞ yields the result that L̄Σss + ΣssL̄
T − 2η2IN−1 = 0

(see Lemma A.3), whereby Σss = P when η2 = 1
2
. It is important to note that these

statements are valid only for LTI systems or static network structures. Therefore, they are
most applicable to the current study under conditions where the system has reached a steady-
state structure. However, we will also analyze the evolution of the "snapshot" H2-norms of
the network as its structure changes with time. Robust systems minimize the H2-norm.

8 Princeton University
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2 Framework for Network Evolution

This section outlines the overall framework upon which our current research on distributed
consensus protocols is conducted. Namely, we present a basic model for network evolution
through utility maximization. Equation 1.1 summarizes the state dynamics, but does not
prescribe a model for network evolution (L̇). When considering network evolution through
utility maximization, it is obvious that the specific choice of utility function may drastically
affect behavior. We turn to nature for inspiration regarding the form of utility in a collabo-
rative network. In [5], the evolution of network structure is studied according to a specially
designed utility maximization protocol that builds upon economic and sociological models of
cooperative interaction in [6, 10]. We present this model in its original form and also derive
a dimensionless form that yields insights into how the network dynamics scale relative to
state dynamics. Then, we briefly survey key results from [5] for network equilibria.

2.1 Utility Model

The utility maximization problem is best posed in terms of resource allocation by individual
agents. Each neighborly connection consists of a collaboration, and each agent i invests aij
into its collaboration with agent j. As in canonical economic models that maximize profit
(revenue subtracted by cost), each collaboration has a payoff which is given by a benefit
function subtracted by a cost function. The functional form of benefit and cost are the main
ideas to be extracted from sociological models, as shown below.

The benefit of a collaboration is determined to be a sigmoidal function of the variable
σij = aij + aji while the cost to an individual is a superlinear function of the individual’s
weighted outdegree, douti . This can be motivated using the following model situation: consider
a group of students collaborating on a tough homework problem in a classroom. The students
are only allowed to leave the room when the entire group has reached a consensus on the
answer. Furthermore, students are only allowed to collaborate with other students in the
room who are sitting in desks adjacent to their own. Then, it stands to reason that the
benefit of an individual collaboration must saturate at some level of investment, whereas
the cost to a student of paying attention to his neighbors will increasingly require greater
concentration, energy, time, etc. Both students benefit from a collaboration, even if the
collaboration is highly skewed (smart students still need lesser-abled students to reach the
consensus with everyone else). Hence, the benefit is symmetric in the pair (i, j). This model
captures realistic phenomena such as the "inefficiency of small investments, saturation of
benefits at high investments, as well as additional costs incurred by overexertion of personal
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←

(

ρ,
2ρ

√

τ + ρ2

)

(a) B(σij) vs. σij (b) C(douti ) vs. douti

Figure 2.1. (a) Benefit and (b) Cost functions for the utility model.

resources" [5]. A summary of the utility for each agent is:

Pi =
∑
j 6=i

B(σij)− C
(
douti

)
(2.1)

where B is sigmoidal and C is superlinear. The specific functional forms are further con-
strained by the fact that B(0) = C(0) = 0. Also, we intuit that the x-intercept should lie
below the point of inflection of the sigmoid’s S-curve to allow for the point of inflection (the
point above which the marginal benefit starts decreasing) to play a part in the dynamics of
collaboration. Example functional forms are given in [5]:

B(σij) =
2ρ√
τ + ρ2

+
2(σij − ρ)√
τ + (σij − ρ)2

(2.2a)

C(douti ) = µ(douti )2 (2.2b)

for parameters ρ, τ , and µ. The point of inflection occurs at σij = ρ, so larger ρ shifts
the point of inflection to the right. Therefore, we require ρ > 0 for the point of inflection
to play a part in the dynamics. Larger τ flattens the sigmoid: it approximates a line as
τ → ∞. The parameter µ governs the cost-benefit ratio for a given network. Figure 2.1
shows representative benefit and cost functions for this utility model.

Each agent maximizes utility at any given time by performing gradient ascent, resulting in
the following system for (non-reduced) consensus dynamics:9

ẋ(t) = −L̂(t)x(t) + ξ(t) (2.3a)

9The state dynamics are linear with static L̂. Now both the state dynamics and network dynamics are
nonlinear.
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ȧij(t) =
∂

∂aij
Pi(t) ∀(i, j) ∈ E (2.3b)

Importantly, Equations 2.1 and 2.3b use non-normalized edge-weights. Otherwise, we would
have douti ∈ {0, 1} ∀ i ∈ V and therefore only one nonzero value for C(douti ). This would
result in unrealistic dynamics for the utility maximization model prescribed. Thus, whereas
ẋ depends only on L̂ to isolate the effects of the absolute magnitudes in aij, Equation 2.3b is
a model for L̇ and, as a result, the absolute magnitudes of aij affect the dynamics of network
structure evolution. As a final note, the number of agents N has effects on both the state
dynamics (through the eigenvalues of L̂) and network structure dynamics (to be shown in
Section 3).

2.1.1 Dimensionless Form and Network Timescale

We now use dimensional analysis to relate the dynamics of Equation 2.3b to the state dynam-
ics. The state dynamics evolve in time proportional to the inverse of the smallest eigenvalue
λ of L̂, which is guaranteed to satisfy Reλ ∈ [0, 2] (see Corollary A.2). If we consider the
functional form for B(σij), then we see that the units of σij are the same as those of ρ
and
√
τ , rendering B(σij), C(douti ), and Pi dimensionless. Then, assigning units of Col (for

collaboration) to aij, Equation 2.3b requires that time be proportional to Col2. Following
the form of the classic Buckingham Π Theorem [4], we can find a convenient basis for the
kernel of the matrix of dimensions (the Π-products or dimenionless parameters), provided
that we properly choose the form with which to scale aij.10 Because the network dynamics
must occur about the inflection point of the sigmoidal benefit curve, the relevant scale in
this case is ρ. In other words, ρ essentially shifts the location of the sigmoid in σij, thereby
changing the characteristic value for the sum aij + aji.

Using this scaling, we define the following dimensionless variables:

bij =
aij
ρ
, sij =

σij
ρ
, eouti =

douti

ρ

and derive the following dimensionless components of utility:

B(sij) =
2√
r + 1

+
2(sij − 1)√
r + (sij − 1)2

(2.4a)

10This caveat is similar to considering the manner in which to scale pressure in the dimensionless form
of the Navier-Stokes equations. Depending on the flow regime, pressure may scale with viscous forces or
inertial forces. Choosing the wrong form can result in terms blowing up or vanishing in the dimensionless
formulation.
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C(eouti ) = m(eouti )2 (2.4b)

r =
τ

ρ2
, m = µρ2 (2.4c)

Finally, nondimensionalizing Equation 2.3b yields ρ2 as the relevant timescale for charac-
terizing network structure dynamics. Thus, whereas the state dynamics are limited to a
timescale ≥ 1

2
, the network dynamics can be conceivably faster based on the value of ρ. Of

course, the network dynamics near equilibrium will not necessarily occur at this timescale.
They are governed by the distance away from ρ at which equilibrium points lie, and, as we
show in Section 3.3.1, equilibrium perturbations are governed by the timescale µ−1 = ρ2/m.

Importantly, Equation 2.2 is equivalent to Equation 2.4, but, as shown here, the latter
provides a clearer relationship between state and network dynamics, which encompasses a
large portion of this study.

2.2 Review of Previous Results for Network Dynamics

This section reviews results regarding the dynamics of network evolution, i.e. Equations 2.2
and 2.3b, which was conducted in [5]. To reiterate, [5] does not study evolution of a state
vector x along with network structure; it only studies the evolution of the network structure
itself. However, this analysis is important as it helps us derive key properties regarding the
steady-state structure of networks with this utility model, which has immediate ramifications
on the state dynamics.

The steady-state behavior can be characterized by the coordination of investments aij. We
define the pair (i, j) as a bidirectional connection when aij 6= 0 ⇐⇒ aji 6= 0 and define a
bidirectionally connected component (BCC) as a connected sub-graph of the network com-
posed solely of bidirectional connections. Similarly, a one-sided link is deemed unidirectional.
In general, steady states will consist of both unidirectional and bidirectional connections, al-
though the latter type is more common (shown below). In addition, links that begin with
nonzero values but vanish to zero at steady-state are vanished links.11 Qualitative behav-
ior is summarized in Figure 2.2, the result of a simulation carried out using an adaptive
forward-Euler method with aij(t0) = N (1, 10−28), ρ = 0.65, τ = 0.1, and µ = 1.5 [5].

The following two properties regarding the coordination of investments within a BCC yield
important ramifications regarding steady-state network structure, so we review the proofs
from [5]:

11Numerically, a link aij is said to have vanished when its value goes below a certain threshold and ȧij < 0.
In this study, we use a threshold of 10−10. Note that a vanished link may "unvanish" if ȧij > 0.
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Figure 2.2. Representative simulation of steady-state network structure [5]. Lines between
nodes indicate connections, with a dash to indicate the relative magnitude of aij to aji; a dash
closer to node i indicates aji > aij . Individuals with higher utility are placed in a more central
location and are shaded darker. These individuals are characterized by a relatively high number
of collaborations in which they provide minimal effort, thereby receiving high benefits for little
cost. Fringe individuals (in white) collaborate with others through unidirectional links.

Proposition 2.1. Within a BCC at equilibrium, douti = c where c ∈ R+, or all agents make
the same total investment.

Proof. By symmetry,
∂B(σij)

∂aij
=
∂B(σij)

∂aji
:= B′(σij)

∂C(douti )

∂aij
=
∂C(douti )

∂aik
:= C ′(douti )

Stationarity of a bidirectional link requires ȧij = ȧji = 0 as well as aij 6= 0, which implies
B′(σij) = C ′(douti ) = C ′(doutj ). Then, because C ′ is injective, douti = doutj and the pair (i, j)

exhibit the same total investment. Because a BCC is composed solely of bidirectional links,
this argument iterates across all pairs of nodes within a BCC.

Proposition 2.2. At equilibrium, a bidirectional link between the pair (i, j) within a BCC
receives one of up to two possible values for investment (σij ≥ ρ and σij ≤ ρ). If a BCC is
locally stable to arbitrary perturbations in aij, each node can have at most one bidirectional
link with σij at the lower of the two possible values.

Proof. By Proposition 2.1, B′(σij) is the same for all pairs (i, j) within a steady-state BCC.
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If this were not true, a node i could rearrange its investments to increase utility, violating
stationarity. Due to the sigmoidal form of B(σ), there are at most two locations for this
value of B′(σij), one above and one below the inflection point (or they may both lie on the
inflection point).

It is shown in [5] that local stability of a BCC to perturbations in aij has the following
necessary conditions for a single bidirectional link:

C ′′(douti ) > 0 and 2B′′(σij)− C ′′(douti ) < 0 (2.6)

and the following necessary conditions for every pair of bidirectional links (i, j) and (i, k) in
the BCC:

B′′(σij)B
′′(σik) > C ′′(douti ) (B′′(σij) +B′′(σik)) (2.7)

The quadratic form for C makes C ′′ > 0 always. Enumerating through the possible combi-
nations of B′′(σi∗) > 0 and B′′(σi∗) < 0 yields the result that node i can have at most one
link with σi∗ below the inflection point.

There are a few interesting remarks about the above propositions. First, Proposition 2.2
shows the importance of the inflection point (σij = ρ) of the sigmoidal benefit curve in the
stability of network dynamics. Importantly, ρ = arg maxB′(σij), and B′(σij) is monotoni-
cally decreasing in |σij − ρ|. Thus, for a fixed level investment by node i, a withdrawal in aji
makes node j more (less) attractive when σij is above (below) ρ. This behavior accurately
models modes of social interaction, as observed in [2] and (humorously) described in [11, 12].

Additionally, we emphasize that the local stability conditions discussed in Proposition 2.2
are necessary but not sufficient conditions for stability in arbitrary perturbations of aij. We
show in Section 3.2 that some BCC’s are at best marginally stable, even when Equations 2.6
and 2.7 hold true. This results from hidden modes of collaboration that are not captured by
network dynamics.

Finally, it would appear that the steady-state structure for a BCC is severely limited since
douti and σij are constrained to one or two values respectively. However, this degree of ho-
mogeneity does not preclude heterogeneity in aij within a BCC. To get an intuitive notion
for heterogeneity in BCC links (as shown in Figure 2.2), note that Propositions 2.1 and 2.2
constrain the total investment for each node but only constrain the benefit for an individual
collaboration. Thus, the benefit per node scales with the (unweighted) nodal degree, yield-
ing higher benefits and overall utility for nodes with higher degree centrality (indegree and
outdegree centrality are equivalent in a BCC). Additionally, degree-central nodes must nec-
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Figure 2.3. Heterogeneity in BCC links [5]. This heterogeneity arises from variations in degree
centrality. Degree central nodes pay little attention to their neighbors, but receive lots of
attention from these neighbors. Because benefits scale with degree centrality while nodal costs
remain fixed for all nodes, individual payoffs scale with degree centrality.

essarily place less investment into an individual collaboration at a stationary state than less
degree-central nodes due to the conservation of total investment for each node. Therefore,
investments "flow" towards areas of higher average degree centrality, as shown in Figure 2.3.

This observation raises an important question regarding link heterogeneity in BCC’s which
are homogeneous in (unweighted) degree, such as a cycle BCC (nodal degree of 2) or a
complete BCC (nodal degree of N − 1). We show in Section 3.2 that heterogeneity in aij is
possible in degree-homogeneous BCC’s for N > 2 due to the hidden modes of collaboration
mentioned above, and this characteristic plays an important part in the state dynamics of
BCC’s. First, we must present a more natural basis with which to represent the network
dynamics.
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3 Analysis of Network and State Dynamics

In this section, we analyze network and state dynamics using the model presented in Section
2 for L̇. Having illustrated results from previous studies to motivate our current research, we
present further analysis regarding network evolution and its ramifications on state dynamics.
This leads to important conclusions regarding the shortcomings of the current utility model
with respect to consensus dynamics.

3.1 Network Dynamics in (σ, d) Space

Although the model from [5] poses network dynamics in terms of aij (Equation 2.3b), it
is evident from the functional forms of B′(σij) and C ′(douti ) that network evolution only
depends on the variables σij and douti , a basis that we will henceforth abbreviate as the (σ, d)

space. Note that a collaboration between nodes i and j has two sets of (σ, d) dynamics:
(σij, d

out
i ) and (σij, d

out
j ), but these dynamics are just trajectories in (σ, d) space and can

thus be plotted together. Therefore, the most useful aspect of analyzing the problem in this
space is the fact that we can conveniently illustrate the network evolution as a collection of
trajectories in two dimensions; the exact number of trajectories scales with network size and
depends on the graph structure.

The nullclines for network dynamics are defined as the manifolds along which ȧij = 0. We
define the pair (σ0, d0) as a point along this manifold for some arbitrary pair of nodes (i, j).
Solving ȧij = 0 yields the nullcline as an algebraic function d0(σ) in (σ, d) space (or e0(s) in
dimensionless form):12

d0(σ) =
τ/µ[

τ + (σ − ρ)2] 3
2

, e0(s) =
r/m[

r + (s− 1)2] 3
2

(3.1)

The relevant dimensionless form can be found by just replacing the variables (d, σ, τ, µ, ρ)

with (e, s, r,m, 1) according to Section 2.1.1.13 This nullcline is shown in Figure 3.1 and
is marked by two special points separating different regimes for network dynamics near
equilibrium.

The first special point is σ = ρ, which is a characteristic value when considering local stability
against perturbations in σ or d from equilibrium. As noted in Figure 3.1, ȧij > 0 underneath
the nullcline and ȧij < 0 above the nullcline. Also, we know that ∂di/∂aij = ∂σij/∂aij = 1.

12For clarity, we will omit writing ∗ij for expressions that are for arbitrary pairs of nodes.
13Due to this similarity, we will often present results in dimensional form for consistency with previous

results.
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σρ

d

0

ȧij > 0

ȧij < 0

(a) Nullcline

(

ρ,
1

µ
√
τ

)

↓

↑

d′
0(σ) = 0.5

σρ

d

(b) Zoomed-in view of nullcline near σ ≈ ρ

Figure 3.1. The nullcline in (σ, d) space: d0(σ). For σ ≥ ρ, the dynamics are locally stable to
perturbations in σ and d. For d′0(σ) < 0.5 (trivially satisfied for σ ≥ ρ), a single bidirectional
connection between nodes i and j is locally stable to perturbations in aij . (d′0(σ) := d

dσd0(σ) =
d
dse0(s) := e′0(s)).

Thus, local perturbations in d always tend to move the system back towards the nullcline,
although not necessarily back to the same point on the nullcline due to the coupling of the
numerous (σ, d) pairs. In contrast, local perturbations in σ tend to move the system back
towards the nullcline only when σ ≥ ρ. Thus, d0(σ) exhibits saddle-like behavior for σ < ρ

under local perturbations in σ and d.

The second special point characterizes regions of stability to local perturbations in aij from
equilibrium for a single bidirectional collaboration. By Proposition 2.2, a bidirectional col-
laboration is stable against local perturbations in aij when 2B′′(σ) < C ′′(d) (Equation 2.6).
This corresponds to 0.5 > d′0(σ). We can now complement the proof of this result in [5] with
a graphical argument. The magnitude and direction of ȧij = ∂Pi/∂aij = B′(σij) − C ′(douti )

depends on the vertical distance of the state from the nullcline: douti − d0(σij). Namely,
ȧij = −2µ [douti − d0(σij)]. Consider a point on the nullcline (σ0, d0(σ0)). Then a small per-
turbation (δ1, δ2) from this point to (σ0 + δ1, d0(σ0) + δ2) results in the following linearized
dynamics:

˙(∆aij) = −2µ [(d0(σ0) + δ2)− d0(σ0 + δ1)] ≈ −2µ [δ2 − δ1d
′
0(σ0)] (3.2)

The perturbation δ in aij from equilibrium corresponds to the perturbation (δ, δ) for agent i
and (δ, 0) for agent j in (σ, d) space. We already know that the collaboration is stable when
σ ≥ ρ (i.e. d′0(σ) ≤ 0), and this is also evident from Equation 3.2. For d′0(σ) > 1, both
perturbed points lie below the nullcline, so the collaboration is unstable. For 0 < d′0(σ) ≤ 1,
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∆1

d0(σ)
↓

σ
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σ0σ0

(a) Unstable since ∆1 < ∆2

δ

δ

δ

∆2

∆1

d0(σ)
↓

σ

d

σ0σ0

(b) Stable since ∆1 > ∆2

Figure 3.2. Local stability analysis of a single bidirectional collaboration for 0 < d′0(σ) ≤ 1.
These pictures show a zoomed-in view of small perturbations from equilibrium, wherein d0(σ)
appears approximately linear.

the perturbed dynamics are dominated by the perturbation that moved farthest away from
the nullcline (for small δ). The relative magnitudes of ˙(∆aij) and ˙(∆aji) can be determined
from a first-order approximation of Equation 3.2:∣∣∣∣∣ ˙(∆aij)

˙(∆aji)

∣∣∣∣∣ ≈
∣∣∣∣d′0(σ0)− 1

d′0(σ0)

∣∣∣∣
For d′0(σ) > 0.5, ˙(∆aji) dominates, and we know that the corresponding perturbation (δ, 0)

is unstable in this region where σ < ρ. For 0 < d′0(σ) < 0.5, ˙(∆aij) dominates, and we know
that the perturbation (δ, δ) is locally stable because d′0(σ0) < 1 and (δ, δ) lies above the
nullcline. This analysis is summarized in Figure 3.2. For d′0(σ) = 0.5, the linearized analysis
of [5] fails (∆1 = ∆2 in Figure 3.2), but our analysis easily incorporates higher-order terms:

∣∣∣∣ ȧijȧji
∣∣∣∣ ≈

∣∣∣∣∣ δ2d′′0(σ0) + d′0(σ0)− 1
δ
2
d′′0(σ0) + d′0(σ0)

∣∣∣∣∣
Thus, the collaboration is locally stable for d′0(σ) = 0.5 and d′′0(σ) < 0, while it is unstable
for d′0(σ) = 0.5 and d′′0(σ) > 0, which provides a slightly stronger result than that provided
in [5].14 As a final note, we see that for large ρ, we could have another region at small σ
in which d′0(σ) < 0.5, indicating a second region of local stability to perturbations in aij

for a single bidirectional collaboration. According to Proposition 2.2, however, this level of
investment is rarely encountered in stable BCC’s.

14We could add even higher-order terms as necessary.
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3.1.1 Archetypical Network Structures in (σ, d) Space

Having presented the natural form with which to understand network dynamics, we now show
two archetypes for network configurations which represent extremes in network dynamics.

Homogeneous Complete BCC We define a homogenous complete BCC as a complete
graph in which aij = aji 6= 0 for all pairs (i, j) within the BCC. By symmetry, σij = 2aij

and douti = (N − 1)aij, so the dynamics are confined to the line d = N−1
2
σ for all pairs

(σij, d
out
i ); this is a one-dimensional subspace of the N(N+1)

2
-dimensional network dynamics

(dout1 , dout2 , ..., σ12, σ13, ...). A few of these lines are shown with the nullcline in Figure 3.3. If
we restrict the dynamics to maintain the homogeneous BCC state (nobody actively tries to
break symmetry and the network only moves along the line d = N−1

2
σ), then an equilibrium

is locally stable when d′0(σ) < N−1
2

. Thus, the equilibrium can be locally stable to such
restricted perturbations even for σ < ρ, which is not a violation of Proposition 2.2.

Local stability to arbitrary perturbations is possible only if σ ≥ ρ at equilibrium for a
homogeneous complete BCC of N > 2 (by Proposition 2.2).15 This observation helps us
find two critical values of N which characterize bounds on local stability of homogeneous
complete BCC’s at equilibrium. For N ≥ Nu, a homogeneous complete BCC is guaranteed
to be unstable to arbitrary perturbations. For N ≤ Ns, a homogeneous complete BCC at
equilibrium can be locally stable or marginally stable to arbitrary perturbations:16

Nu =

⌊
2

m
√
r

+ 2

⌋
(3.3a)

Ns =

 min
(⌊

2
m
√
r

+ 1
⌋
, d2e′0(ss)e

)
if r < 9

16⌊
2

m
√
r

+ 1
⌋

if r ≥ 9
16

(3.3b)

ss =
5−
√

9− 16r

8
(3.3c)

Here, s, r, and m are the relevant nondimensional forms for σ, τ , and µ. These results
are proven in Propositions A.4 and A.5. Intuitively, increasing costs prevent an agent from
stably maintaining connections with too many other agents, so a realistic set of parameters
m and r gives Ns ≤ c, where c depends on the problem domain.17 For Ns < N < Nu, there
are multiple equilibria, so local stability to arbitrary perturbations depends on the location

15The degenerate case of N = 2 could be stable anywhere, but the scenario where it reaches a steady-state
with σ < ρ requires unrealistic choices for r,m.

16Nu > Ns but in general Nu 6= Ns + 1. For m = 0.634 and r = 0.260, Ns = 5 and Nu = 8.
17For example, the situation of students trying to solve a homework problem might have c = 5 because it

is hard to maintain simultaneous real-time collaborations with more than 5 people.
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(a) Network structure (N = 4)

Increasing N

σρ

d

0

(b) (σ, d) dynamics for r < 9
16 .

Figure 3.3. Homogeneous complete BCC. In (b), lines of d = N−1
2 σ are shown for some N , im-

plicitly illustrating the pseudo-bifurcation in equilibrium states with variations in the (discrete)
parameter N .

of the specific equilibrium on the nullcline (σ < ρ at equilibrium implies instability). Viewed
in a different light, these results describe bifurcations for the steady states with respect to the
parameter N . If N were continuous, there would be (at most two) saddle-node bifurcations
at the points where the line d = N−1

2
σ and the nullcline lie tangent to each other. Because

N is discrete, the sequence of lines d = N−1
2
σ usually jumps over these bifurcation points (as

in Figure 3.3) except for very specialized values of m and r.

Symmetric BCC Star We define a BCC star as a BCC in which there is one central
node (node 1) with degree N − 1 and N − 1 fringe nodes with degree 1. A symmetric BCC
star satisfies a1j = c1 > 0, and aj1 = c2 > 0, for constants c1 and c2 over all fringe nodes j.
The dynamics are then constrained to σ1j = doutj + dout1 /(N − 1). At equilibrium, doutj = dout1

(by Proposition 2.1), so the steady state is the intersection of the nullcline with the line
d = N−1

N
σ (see Figure 3.4). Because the slope N−1

N
< 1 ∀ N , symmetric BCC stars generally

have a much wider range of stability in N . We can find the critical value such that when
N ≥ N+

u the symmetric BCC star is always unstable to arbitrary perturbations:

N+
u =

{ ⌊
m
√
r

m
√
r−1

+ 1
⌋

if m
√
r > 1

∞ if m
√
r ≤ 1

(3.4)

This result is shown in Proposition A.6, which follows the form of Proposition A.4. Intu-
itively, the star network is easier to manage for each individual, since only the leader (pre-
sumably the most capable individual) has to manage simultaneous collaborations. We will
revisit this observation in Section 4.1.2 and 4.2 when considering dynamic leader selection.
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(a) Network structure (N = 5)

N → ∞
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(b) (σ, d) dynamics for m
√
r ≤ 1

Figure 3.4. Symmetric BCC star. In (b) lines of d = N−1
N σ are shown for many N . These lines

approach d = σ as N →∞.

3.2 Hidden Modes of Collaboration

Now we are ready to understand hidden modes of collaboration, linear combinations of aij
that are not captured in the dynamics of network evolution. These modes play important
roles in the behavior of both network and state dynamics. In the original space of aij, the
network structure can be represented as the vector m = (a12, a13, ...) ∈ Ru

+. The network
dynamics are governed by the vector n = (dout1 , dout2 , ..., σ12, σ13, ...) ∈ Rv

+. In general, the
dimensions u and v change with the network structure based on the number of aij or σij that
are forced to be 0 and which are therefore removed from the dynamics. These two vectors
are always linearly related: n = Tm, where T ∈ Rv×u. We can then define the space of
hidden collaborations (H) and the hidden modes of collaboration (h) as follows:

H = kerT, h ∈ H (3.5)

3.2.1 Ramifications on Network Dynamics

Marginal Stability The presence of hidden modes that are not captured by the network
dynamics yields very important trends which have been mentioned previously. The first is
that many network structures can only have marginal stability at best. Consider a complete
BCC, in which u = N(N−1) and v = N(N+1)

2
. Since dimH ≥ u−v = N(N−3)

2
, hidden modes

are guaranteed for N > 3 simply by the rectangular nature of T .18 When a steady state is

18We will shortly show that dimH > 0 for N = 3 as well.
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perturbed by h, the network remains stationary, because this perturbation does not move
the state away from d0(σ). In other words, h is literally invisible in (σ, d) space, yielding
marginal stability to hidden mode perturbations.

Heterogeneity in Degree-Homogeneous BCC’s The second and related ramification
on network dynamics is that hidden modes allow heterogeneity in aij even when the nodes
are degree-homogeneous or otherwise indistinguishable from each other. This is evident by
noting that a degree-homogeneous BCC at homogeneous equilibrium (such as a homogeneous
complete BCC) is completely symmetric. A perturbation by h necessarily lowers at least one
aij and raises another, because all σij and douti have to remain the same. The network remains
stationary after this perturbation, thereby creating heterogeneity in aij at steady-state.

Hidden Modes in Network Extremes We saw in the last section that the complete
BCC and BCC star represent extremes in network configurations. The former has the most
degrees of freedom for any BCC structure of N nodes, while the latter is one of the BCC
configurations with the least degrees of freedom.19 As a consequence, we would expect dimH
to have extremes over these two structures. We already saw that the lower bound of dimH
is N(N−3)

2
for a complete BCC. For a BCC star, u = 2(N − 1) and v = 2N − 1, so the (σ, d)

dynamics have one more dimension than the aij dynamics. This means that the lower bound
of dimH for a BCC star is 0. We now determine the number of hidden modes for both
network structures by examining T .
Proposition 3.1. A BCC star has no hidden modes of collaboration.

Proof. We can reorder the entries in m and n any way we please; this will merely permute
the rows and columns of T , but it will not change rankT . Let us write the first N−1 entries
of m as a1j and the last N − 1 entries as aj1. The first entry of n is dout1 , the next N − 1

entries are σ1j, and the last N − 1 entries are doutj . Then, T can be written as follows:

T =

 1TN−1 0TN−1

IN−1 IN−1

0N−1,N−1 IN−1

 =

(
gT

P

)

where 0i,j is the zero matrix of size i× j, g ∈ R2N−2 and P ∈ R(2N−2)×(2N−2). The triangular
form of P implies that rankP = 2(N − 1), and it is clear that gT is the sum of the first
N −1 rows of P subtracted by the sum of the last N −1 rows. Therefore rankT = 2(N −1),
and dimH = u− rankT = 0.

19A path also has the same number of degrees of freedom.
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Proposition 3.2. A complete BCC has
(
N−1

2

)
hidden modes of collaboration.

Proof. To make notation clear, we temporarily add subscripts ∗N to denote variables associ-
ated with a system of N nodes. Then, we can relate TN to TN+1. We append aj,N+1 followed
by aN+1,j to m (where j ∈ {1, 2, ..., N}). Also, we append the entry doutN+1 followed by σj,N+1

to n (where j ∈ {1, 2, ..., N}). Then, TN+1 is structured in the following way (where the
base case of T1 is the empty matrix):

TN+1 =

 TN XN

0TN(N−1) kT

0N,N(N−1) YN



XN ∈ Rv
N
×2N , k =

(
0N

1N

)
, YN =

(
IN IN

)
where XN has N nonzero entries: there is a 1 in each row/column pair corresponding to the
mapping from aN+1,j to doutj (j ∈ {1, 2, ..., N}). We can write doutN+1 as a linear combination
of the other variables in n:

doutN+1 =
∑
i,j

σij −
N∑
i=1

doutN

Thus, we can eliminate the corresponding row
(
0TN(N−1) | kT

)
when computing the rank of

TN+1, and we now know rankTN ≤ vN − 1. The N rows in the submatrix
(
0N,N(N−1) | YN

)
are linearly independent with each other by inspection of the form of YN . Also, every row in(
0N,N(N−1) | YN

)
has a nonzero element in the last N columns, whereas the last N columns

of XN are all zeros. Therefore the rows in
(
0N,N(N−1) | YN

)
are also linearly independent

with the rows of the submatrix (TN | XN). Applying this argument recursively back to
N = 1, we can see that all rows in TN+1 corresponding to σij (where i ∈ {1, 2, ..., N}
and j ∈ {2, 3, ..., N + 1}) are linearly independent with each other, and they are linearly
independent with all rows corresponding to douti (where i ∈ {1, 2, ..., N}). This also implies

rankTN+1 = rank (TN | XN) + rank
(
0N,N(N−1) | YN

)
= rank (TN | XN) +N.

We can permute the rows in (TN | XN) such that the first N rows of XN look like the
matrix (IN |0N,N). Then these rows, which correspond to douti (where i ∈ {1, 2, ..., N}),
are linearly independent with each other. So we have just shown that all of the rows in
(TN | XN), which are composed of doutk and σpq (where k ∈ {1, 2, ..., N}, p ∈ {1, 2, ..., N − 1},
and q ∈ {2, 3, ..., N}), are linearly independent: rank (TN | XN) = vN . We now have the
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Figure 3.5. A symmetric zero-sum 3-cycle: hc31,2,3. Perturbing a system by chc31,2,3 implies
increasing the magnitudes of the edges a12, a23, and a31 by c while reducing the magnitudes of
the edges a13, a32, and a21 by c.

difference equation: rankTN+1 = vN + N = vN+1 − 1, so rankTN = vN − 1 ∀ N > 0. Thus,
dimH = u− rankT = u− v + 1 = (N−1)(N−2)

2
=
(
N−1

2

)
.

We can summarize these two propositions as follows. The dimension of H is a metric for
what we qualitatively introduced as network extremes: a BCC star has no hidden modes,
whereas a complete BCC has a hidden space that grows ∼ N2

2
, i.e. nearly half of the aij

modes are hidden for large N . More importantly, the space of hidden modes for a complete
BCC with N nodes contains the space of hidden modes for any other graph of N nodes, i.e.
we can have at most

(
N−1

2

)
hidden modes for any graph of N nodes. This is because any

graph can be created by just removing edges from a complete graph with the same number
of nodes. In other words, if a hidden mode exists on any graph of N nodes, it must exist on
the complete BCC of N nodes.

A Metric for Network Redundancy We have established that dimH is a metric with
which we may quantitatively differentiate between different types of graphs, but we have not
yet defined what this metric measures. Intuitively, we expect the hidden modes to represent
redundancy, and this is precisely what we discover by finding a basis for H. The complete
BCC with N = 3 has one hidden mode. If we set the order as in Proposition 3.2, then
m = (a12, a21, a13, a23, a31, a32)T , and n = (dout1 , dout2 , σ12, d

out
3 , σ13, σ23)T . The (unnormalized)

fundamental hidden mode is:

hc31,2,3 = (1,−1,−1, 1, 1,−1)T

We call this structure a symmetric zero-sum 3-cycle (hc3), because it is composed of 3 nodes
(labeled counterclockwise in subscripts) joined in a symmetric cycle with a net sum of 0 over
the edge weights. The vector hc31,2,3 is shown Figure 3.5.
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In Proposition A.7 we prove that for any graph,H is spanned by symmetric zero-sum 3-cycles.
In general, many of these

(
N
3

)
vectors are linearly dependent: hc31,2,3 − hc31,2,4 + hc31,3,4 = hc32,3,4.

Also, hc31,2,3 − hc32,3,4 = hc41,2,4,3, which is a symmetric zero-sum 4-cycle. In this way, linear
combinations of symmetric zero-sum 3-cycles produce all types of hidden modes, including
larger symmetric zero-sum cycles. Now we can relate hidden modes to network structure:
a network has no hidden modes iff there is no way to make a symmetric zero-sum k-cycle,
where 3 ≤ k ≤ N . Furthermore, the number of hidden modes represents the number of
linearly independent hck that exist for a graph. A symmetric zero-sum k-cycle formally
characterizes redundancy because it represents the ability for information output to flow
back to the source as input without retracing an edge. It represents indirect feedback in a
network. In contrast, direct feedback is represented by any bidirectional link.

3.2.2 Ramifications on State Dynamics

In and of itself, redundancy (i.e. indirect feedback) may be beneficial or detrimental to
multi-agent systems. In the context of consensus dynamics, we could expect redundancy
to be detrimental to the speed of convergence, because agents waste time and resources
receiving information that they already know. The effects on robustness are less obvious,
since "turning the knobs" on the indirect feedback terms (i.e. changing the magnitudes of
the hidden mode vectors) may increase robustness up to a certain point after which the
feedback overcompensates for perturbations. These intuitive notions are easily cast into a
more formal framework: the H2-norm (abbreviated as H2) and the speed of convergence
(abbreviated as λmin) change as we perturb a system along a hidden mode h. Analyzing
their variations is similar to looking at the root locus plot of a transfer function; instead of
tracking the change in poles of a transfer function as we change a parameter, we can track
the changes in the aforementioned characteristics of state dynamics as we perturb A with
ch, where c is a real number bounded by the fact that aij ≥ 0. We show two examples of
these variations below.

When presenting such results, it is convenient to compare the changes we observe to a baseline
value, one that is independent of the hidden mode perturbations. The homogeneous complete
BCC has a very special structure; we now show that the state dynamics for a homogeneous
complete BCC (henceforth calledH∗2 and λ∗min) are unaffected by hidden mode perturbations.
Proposition 3.3. H∗2 and λ∗min, the H2-norm and convergence speed for a homogeneous
complete BCC, are invariant under hidden mode perturbations.

Proof. Consider perturbing the adjacency matrix A of a homogeneous complete BCC by a
linear combination of all

(
N−1

2

)
linearly independent hidden modes:

∑
k ckh

c3
mk,nk,ok

, where
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mk, nk, and ok are the three nodes of the k−th symmetric zero-sum 3-cycle. Because
douti = doutj = dout over all pairs of nodes (i, j) (all weighted outdegrees are the same), the
perturbed normalized Laplacian (L̂p) can be written in the following way:

L̂p = L̂− C , C =
1

dout

∑
k

ckh
c3
mk,nk,ok

where L̂ is the unperturbed normalized Laplacian. The unperturbed normalized Laplacian
is symmetric and therefore normal and diagonalizable, and it looks like the following:

L̂ =
1

N − 1
(NIN − 1N1

T
N) =

N

N − 1
Π

The matrix C is skew-symmetric, so it is also normal and diagonalizable. Because L̂ is a
projection matrix onto the subspace orthogonal to 1N and because C is already orthogonal
to 1N by construction, we must have L̂C = CL̂ = C. Therefore, the two matrices L̂ and C
can be simultaneously diagonalized, whereby the eigenvalues of L̂p are just the eigenvalues
of L̂ subtracted by those of C. Since C is skew-symmetric, it has imaginary eigenvalues.
Thus, λ∗min does not change under hidden mode perturbations. The matrix L̂p is also normal
because it is the sum of normal matrices which commute. Then, by Proposition 1 of [16],
we can write the H2-norm of L̂p as:

H∗2 =

(
N∑
i=2

1

2 Reλi

) 1
2

The real parts of the eigenvalues for L̂ and L̂p are the same, so the H2-norm is also the
same. Thus, H∗2 and λ∗min are invariant under hidden mode perturbations. By symmetry, all
nonzero eigenvalues are the same for L̂ of a homogeneous complete BCC. Also, tr L̂ = N , so
the values of λ∗min and H∗2 are:

λ∗min =
N

N − 1
(3.6a)

H∗2 =
N − 1√

2N
(3.6b)

Consider a non-homogeneous complete BCC of 3 nodes, which has just one hidden mode:
hc31,2,3. We create a random matrix where aij are chosen from the Gaussian distribution
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Figure 3.6. The effect of perturbing a complete BCC (N = 3) with the hidden mode hc31,2,3.

N (1, 0.12). Then the perturbed A matrix may look like the following:

A =

 0 0.78 1.00

1.31 0 0.85

0.95 1.23 0

+ c

 0 1 −1

−1 0 1

1 −1 0

 , −0.78 ≤ c ≤ 1.00

Figure 3.6 shows H2/H
∗
2 and λmin/λ

∗
min with variations in c. The shape of the speed of

convergence plot always looks like a horizontally shifted version of Figure 3.6(a) for complete
graphs of N = 3 (non-complete graphs do not even have hidden modes for N = 3). There
are only 3 eigenvalues for L̂ and one of them is forced to be zero by construction, so only two
eigenvalues change. The homogeneous complete graph has all nonzero eigenvalues equal to
λ∗min, so the nonzero eigenvalues of any connected graph of 3 nodes must be symmetrically
placed about λ∗min. Therefore, λmin ≤ λ∗min, as shown in Figure 3.6. The value of c which
corresponds to the minimum speed of convergence (c ≈ 0.19) is the point at which L̂ has
eigenvalues "as real as possible," or the skew-symmetric component of L̂ is minimized:

arg min
c

λmin
λ∗min

= arg min
c

∥∥∥∥∥L̂− L̂T2

∥∥∥∥∥
2

The general behavior of the H2-norm plot is more complicated. The global behavior of the
plot (if we let c ∈ R irrespective of the non-physicality for negative elements in A) can
have a global maximum (but no other extrema), a global minimum and a global maximum,
or only a global minimum (but no other extrema) as shown in Figure 3.6(b); it always
has a horizontal asymptote as well. This non-monotonic behavior is due to the fact that
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(a) λmin/λ
∗
min vs. c1 and c2 (b) H2/H

∗
2 vs. c1 and c2

Figure 3.7. The effect of perturbing a complete BCC (N = 4) with the linear combination of
hidden modes c1h

c3
1,2,3 + c2h

c3
1,2,4.

the behavior of the H2-norm depends on the solution of a Lyapunov equation of 2 × 2

matrices, which yields at most fourth-order variations for elements of the solution matrix.
The asymptote is expected because the system looks very similar to ±hc31,2,3 at large |c|.
Despite this complicated behavior, the fact that H2 varies non-monotonically with c verifies
our intuition about redundancy and robustness (at least for N = 3).

Moving to N > 3 yields even more complex behavior for the response of state dynamics to
hidden modes. We append the 3×3 matrix above with the column (1.09, 0.71, 1.14, 0.98)T and
the row (0.83, 0.99, 1.03, 0.98), and perturb this 4-node system with the linear combination
c1h

c3
1,2,3 +c2h

c4
1,2,4 in Figure 3.7.20 The speed of convergence no longer has the simple shape as

in the case of Figure 3.6: now it is the minimum of the superposition of two convex surfaces.
Nevertheless, some observations from N = 3 still apply: λmin ≤ λ∗min and minc1,c2 λmin

still corresponds to the point which minimizes the skew-symmetry of L̂.21 The magnitudes
of deviation from λ∗min can be greater as we increase the degrees of freedom; each hidden
mode affects a pair of eigenvalues, so the hidden modes can couple on a single eigenvalue.
The variation of H2 remains non-monotonic and in this case shows saddle-like behavior
over the parameter domain. The magnitude of H2 variations also increases due to the
increased degrees of freedom. Although we cannot definitively comment on the shapes of
their variations under hidden mode perturbations as N increases even further, we can always
bound these plots by the following results: λmin ≤ λ∗min and H2 ≥ H∗2 for any connected
graph (see Theorems A.8 and A.9).

20Note that the constraints on c2 are in general dependent on c1.
21Although it is hard to see, the curve in Figure 3.7 has a well-defined minimum at (c1, c2) ≈ (0.33, 0.11).
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Our analysis verifies intuitive notions about the effects of redundancy on the speed of con-
vergence and robustness of a network with respect to consensus. The fact that redundancy
affects state dynamics but not network dynamics is a fundamental weakness in the utility
model. Before presenting ways in which to improve upon the utility model, we analyze a
reduced-order system to display another weakness: the ability of a connected graph to break
and become disconnected.

3.3 Reduced Dynamics of Complete BCC’s

Realistic systems involve large N and such systems become extremely complicated to analyze
analytically due to the nonlinear and highly coupled nature of the dynamics. Therefore, it is
important to be able to analyze a reduced-order system, a model that necessarily throws away
some of the complexity of the original model but renders the detailed analysis of arbitrarily
large systems tractable and approachable.

Rather than constrain the dynamics to be linear (which would grossly change the behavior
of each node), we leave the utility maximization protocol (Equation 2.3b) intact. Instead,
we constrain the network’s initial conditions. We begin with a complete BCC because all
other graph types are contained within this network, and it has the greatest possibilities for
network evolution. Also, we prescribe that N > 3 since we are concerned with large-scale
networks, and we add symmetry to the initial condition by enforcing that the network is
almost homogeneous. Namely, we perturb just one edge (a12) of a homogeneous complete
BCC. This results in a 7th order system for any N > 3, depicted graphically in Figure 3.8.
Here, the looped edge a33 represents the values aij, where i 6= j and i, j > 2. Because
these nodes are neither receivers nor producers of the perturbation a12, all such nodes can
be grouped into a single node by symmetry. This simplified model allows for more tractable
analysis without removing too much of the initial richness of the network dynamics. This
model has an associated 7th order system in (σ, d) space due to the addition of σ33. The
only hidden mode is similar to hc31,2,3 but edges a12 and a21 are scaled by a factor of N − 2 to
account for the fact that node 3 actually represents N − 2 nodes. Since the edges between
members of group 3 are identical in the reduced system (they are all represented by a33),
there are no hidden modes purely amongst members of this group.

3.3.1 Linearized Dynamics Near Equilibrium

The linearized dynamics near an equilibrium provide intuition for the behavior of large-scale
systems, particularly for N ≥ Nu. As before, we have the vector m of aij (now including
a33), and we define the state at equilibrium for a homogeneous complete BCC as m0. The
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1

2 3

Figure 3.8. Reduced 7th order system

state away from equilibrium is η = m −m0. Rewriting Equation 2.3b as ṁ = f(m), the
linearized dynamics can be written as:

η̇ ≈
(
∂f(m)

∂m

)∣∣∣∣
m0

η (3.7)

where ∂f(m)
∂m

is a shorthand for the 7 × 7 Jacobian matrix. These dynamics can also be
written in (σ, d) space with an analogous 7× 7 Jacobian associated with ṅ, where n = Tm

as before. However, because T is singular, the standard change-of-basis transformation
cannot be used and the transformation must be done manually prior to linearization (both
Jacobians are shown in Appendix B). The most important observations for the linearized
system are the eigenvalues (Table 3.1) and associated eigenvectors of perturbations, which
evolve into the stable/unstable manifolds for the nonlinear dynamics.22 Here, the value
d′0(σ0) = B′′(σ0)/2µ denotes the slope of the nullcline at the value σ0 associated with an
equilibrium for a homogeneous complete BCC.

Table 3.1. Eigenvalues for Linearized Reduced Dynamics of a Complete BCC

λ0 0
λ1 4µd′0(σ0)
λ2 4µ

(
d′0(σ0)− N−1

2

)
λ3 2µ

(
d′0(σ0)− N−1

2
+
√(

d′0(σ0)− N−1
2

)2
+Nd′0(σ0)

)
λ4 2µ

(
d′0(σ0)− N−1

2
−
√(

d′0(σ0)− N−1
2

)2
+Nd′0(σ0)

)

All dynamics near an equilibrium are governed by the timescale 1
µ
, which differs from ρ2 by

the (usually O(1)) factor m. Because near-equilibrium dynamics are already centered about
σ = ρ, we expect a timescale other than ρ2. As mentioned in Section 2.1.1, the distance of
the equilibrium points from ρ is governed by µ, so it is natural for this to be the relevant
scaling factor for the perturbed dynamics.

22The eigenvalues λ3 and λ4 each have an algebraic and geometric multiplicity of 2.
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Figure 3.9. Linearized reduced dynamics for ρ = 0.65, τ = 0.11, µ = 1.5, and N = 11 > Nu = 8.
Both σ and time are shown in dimensionless form. The changes in eouti = douti /ρ are O(10−3)
over this timescale.

Also, we readily observe many of the same characteristic values noted for the stability of the
original, non-reduced system when finding the values for Nu and Ns: λ0 corresponds to the
hidden mode eigenvector, λ1, λ3 > 0 when σ0 < ρ (i.e. N > Ns), and the condition that
λ2 > 0 is only possible for Ns < N < Nu (the associated eigenvector is a uniform growth
of all aij). The value for λ4 is guaranteed to be < 0 ∀ N > 0. For N ≥ Nu, λ1 and λ3 are
the unstable eigenvalues, and λ1 dominates behavior (λ1 > λ3). Interestingly, the associated
eigenvector for λ1 is the following:(

0, 0, 0,
(N − 2)(N − 3)

2
,
3−N

2
,
3−N

2
, 1

)T
with the variables ordered as n = (dout1 , dout2 , dout3 , σ12, σ13, σ23, σ33). Thus, the dominant
behavior of a perturbation from an unstable homogeneous equilibrium is a reallocation of
investments without any change in individual nodal costs. Namely, σ12 and σ33 move in
a direction opposing σ13 and σ23, and the magnitude of σ12 grows/dies much faster than
any of the other variables for large N . The linearized dynamics for positive and negative
δa12 (the initial perturbation) are shown in Figure 3.9 for a specific case with N > Nu.
The dominance of the λ1 eigenmode is clearly illustrated. In the case where δa12 > 0, we
see that σ13 and σ23 vanish. This results in a disconnected network, which has enormous
ramifications regarding state dynamics: consensus is virtually impossible in this case since
nodes 1 and 2 isolate themselves from everyone else. More formally, as the system approaches
disconnection, λmin → 0 and H2 →∞. We now consider the fully nonlinear dynamics to see
if graph disconnection actually occurs.
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3.3.2 Extension to Nonlinear Perturbations

The nonlinear simulations of the cases introduced in Figure 3.9 are shown in Figures 3.10
and 3.11.23 We are mainly concerned with the steady-state structure of the reduced system.
As shown in the figures, the case with a positive initial perturbation results in a disconnected
steady-state graph. The latter case with negative initial perturbation results in a connected
graph that is no longer a BCC due to the vanishing of link a32.24 Simulations have shown
that these steady-state structures result for any reduced system that does not necessarily
start close to equilibrium, so long as the perturbation from homogeneity (i.e. δa12) is small.
This observation results from the following argument: the nonlinearity in the dynamics
comes from B′(σ), which is independent of d. Thus, a vertical perturbation in (σ, d) space
only affects the dynamics linearly. A change in σ as we move along the nullcline merely
changes the values of d′(σ0) in the eigenvalues for the linearized dynamics. Therefore, we
can decompose an initial condition that begins far away from the nullcline but still very close
to d = N−1

2
σ (i.e. small δa12) as a shift along the nullcline followed by a vertical shift in d.

In this way, we find that the dynamics move along the eigenvector associated with λ2 (the
fastest negative pole), which implies a uniform decrease in aij until the system gets close
to the nullcline. Taking this point to be the effective initial condition, we can approximate
further time evolution by the linearized system; δa12 is further than the other δaij from the
nullcline and the line d = N−1

2
σ after the system moved along the λ2 eigenmode. Again, this

result requires δa12 from the line d = N−1
2
σ is small. Large perturbations δa12 from the line

d = N−1
2
σ result in widely different behaviors depending on the specific initial condition.

We can also argue that the linearization of the reduced system approximates the real system
well enough that we should expect graph breakage for all reduced systems with N > Nu and
δa12 > 0 (but δa12 << a12). For s < 1, the only nonlinear terms that could appreciably come
into play for the dynamics away from equilibrium are the terms proportional to B′′′(σ) (the
first neglected terms from the linearizations). Consider a generic perturbation δ. The first
term neglected from the linearization compares to the corresponding terms in the Jacobian
in the following way:

1
2
B′′′(s)δ2

B′′(s)δ
=
δ

2

[
r − 4z2

z(r + z2)

]
(3.8)

z = s− 1

The neglected term becomes increasingly important as we move towards z = 0 (i.e. σ = ρ).

23We use a fourth-order Runge-Kutta method to solve the system of ODE’s.
24Note that (σ23, e2) ends at a location neither on the d axis nor on the nullcline. Stationarity for a

vanished link can occur anywhere in (σ, d) space.
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Figure 3.10. Nonlinear reduced dynamics for δb12 = 0.001, ρ = 0.65, τ = 0.11, µ = 1.5, and
N = 11 > Nu = 8. The steady state graph is disconnected, as predicted by linearized dynamics.
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Figure 3.11. Nonlinear reduced dynamics for δb12 = −0.001, ρ = 0.65, τ = 0.11, µ = 1.5, and
N = 11 > Nu = 8. The steady-state graph is connected, but 4 of the 7 edges have vanished.
Node 2 is a fringe node looking at group 3 through a unidirectional link.
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As z → 0±, the ratio in Equation 3.8 approaches ±∞. As we move away from z = 0 and
hit z = ±

√
r

2
(the points of inflection for the nullcline), the ratio drops to zero. Moving even

further, the ratio has a maximum (minimum) which goes as O(δ/
√
r) at a location |z| =

O(
√
r) for z < 0 (z > 0), after which the ratio approaches zero for larger |z|. Considering

the case of N > Nu, we must have −1 < z < 0 at the initial near-equilibrium condition,
and this point moves closer to z = −1 as N increases. Because σ13 and σ23 dynamics move
towards more negative z from the initial equilibrium point for δa12 > 0, the nonlinear terms
do not appreciably affect their dynamics. The nonlinear terms definitely affect σ12 since the
point of inflection for the time evolution of σ12 occurs near σ = ρ. However, because the d
variables change negligibly as long as z is not close to 0, the points (s12, e1) and (s12, e2) are
likely to lie underneath the nullcline when z → 0− (i.e. s → 1−). Therefore, the nonlinear
term only slows down the motion of σ12 but cannot reverse it. To see this more formally, we
can write:

σ̇ij = 2B′(σij)− 2µ(douti + doutj ) = 4µ

(
d0 −

douti + doutj

2

)
Thus, σ12 is guaranteed to increase as long as the average of the costs for nodes 1 and 2 lies
below the nullcline. At z > 0, the nonlinear term only helps push σ12 towards the direction
that the linearization already wants to move. In this way, the linearization approximates the
(reduced) nonlinear behavior very well. By the time the nonlinear terms come into play, it
is already too late to drastically alter trajectories decided by the linearization.

Importantly, this analysis employs properties specific to the reduced system and its lineariza-
tion, and it does not always hold for arbitrary initial conditions or networks. Nevertheless,
it helps us justify another serious drawback to the utility model: the model allows for graph
breakage not just in unique cases, but over a whole category of graphs and initial conditions.

Main Deficiency in the Utility Model

Our analysis of the network and state dynamics has revealed two important problems regard-
ing the utility model for network evolution. The first concerns hidden modes: redundancy is
not adequately captured by network dynamics, which results in marginal stability for many
classes of networks and the inability for the network to respond to certain network perturba-
tions despite changes in state dynamics. When considering this model in the framework of
consensus dynamics, such behavior is simply unacceptable. The second, and perhaps more
serious, problem is that the utility maximization protocol allows for graph breakage; this is
a major concern since graph breakage renders consensus virtually impossible.

Both of these problems result from the fact that the network dynamics are not coupled to the
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state dynamics. Whereas the state dynamics depend on the network through L̂, the utility
protocol currently makes no reference to the state dynamics when considering benefits or
costs of collaboration. We now consider ways in which to introduce such coupling so that
the network dynamics incorporate information about the systems’s state, thereby addressing
the problems with redundancy and graph breakage. Importantly, we still require that this
coupling remain local such that the overall consensus protocol remains decentralized.
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4 Improvements of the Utility Model for Noisy Consen-

sus Dynamics

Our main research goal is to develop a decentralized protocol for noisy consensus dynamics
using a utility maximization approach. So far, we have introduced a utility model that cap-
tures many realistic aspects of sociological network behavior and therefore appears promising
as an engineering design. Upon further analysis, we have shown that the utility model cur-
rently lacks coupling with state dynamics, which leads to poor performance with respect
to developing a robust and speedy consensus. We now present methods to sophisticate the
utility model.

4.1 Perceived Intelligence

Consider again the situation of students trying to solve a homework problem, which we
used to motivate the utility model in Section 2.1. An efficient individual will tend to spend
more resources collaborating with a neighbor who appears to be smarter or at least more
confident in his/her own work. Without an a priori sense for how smart or confident each
student actually may be, intelligence can only be observed through the measure of how close
to consensus a student is with respect to his/her neighbors: an inherently smart student will
tend to develop consensus with his/her neighbors quickly, and, conversely, those who are
close to consensus with their neighbors will quickly develop confidence in their work. We
use this intuition to motivate the "perceived intelligence" factor (f) with which to weight
the benefit of a collaboration.

We define the set of neighbors for node k (Nk) as the nodes l which satisfy akl > 0 or alk > 0

in the initial condition of the network. This specification captures the fact that even if node
k no longer chooses to collaborate with node l, it can still observe l’s intelligence just by
being adjacent. In other words, neighbors are adjacent members in the undirected version
of the initial network state. We can then define the unweighted degree of node k as deg(k),
which counts the elements in Nk and is not to be confused with the weighted degrees doutk or
dink . The variance of the state of node k with respect to its neighbors can be written as:

vk =
∑
l∈Nk

(xk − xl)2

deg(k)

Then, the absolute intelligence of node k goes as O(1/vk).25 Node i ∈ Nk observes the

25The fact that this parameter diverges at consensus will be dealt with shortly.
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absolute intelligence of node k and all of the other nodes in Ni. Node i then evaluates this
value against the average intelligence in Ni, resulting in the perceived intelligence factor fik:

fik =
1
vk

1
deg(i)

∑
j∈Ni

1
vj

=
deg(i)

1 + Ckvk
(4.1a)

Ck =
∑

j∈Ni 6=k

1

vj
(4.1b)

The perceived intelligence factor fik represents node i’s perception of node k’s intelligence
relative to the other members of Ni. This information is then incorporated into the network
dynamics by scaling the benefit of collaboration.26 In this way, we now have the following
network dynamics:

ȧik = fikB
′(σik)− C ′(douti ) (4.2)

The factor fik helps node i indirectly incorporate information regarding its neighbors’ neigh-
bors, since vk depends on the states of nodes in Nk. This information is obtained at little
cost; the nodes are already passing the values of their states to their neighbors during col-
laboration, so passing the variance vk requires O(deg(k)) ≤ O(N) extra cost of resources for
node k. In sociological networks, some of this cost may be taken up by node i (the receiver
of the information vk), who may perceive the intelligence of node k through nonverbal or
other indirect cues. Regardless of who takes up the cost, computing fik does not add a large
degree of latency or extra burden to a network.

Properties The perceived intelligence factor exhibits desirable properties for realistically
modeling intelligence of a node. First of all, the total intelligence for a node’s neighbors is a
conserved quantity: ∑

j∈Ni

fij = deg(i)

This means that the perceived intelligence of node i’s neighbors is redistributed over time.
Because fik > 0, we now know that fik does not diverge, even as vk → 0. For a finite Ck,
the variation with vk looks similar to 1/(1 + vk), with a maximum of deg(i) at vk = 0 and
an asymptote of 0 as vk → ∞. Behavior as Ck → ∞ is also well defined so long as vk > 0.
When both Ck → ∞ and vk → 0, behavior depends on the directions at which the state
vectors approach the limiting values. To prevent singularities in the simulation code, we add
the value 10−16 to each vk before computing fik.

26It is reasonable to prescribe that the cost C(douti ) is independent of fik. Costs for node i should depend
solely on the activity of node i and not on other nodes.
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The perceived intelligence factor demonstrates desirable behavior for other cases of intel-
ligence as well. Consider the case where all vj = a for j 6= k. Then fik becomes to the
following:

fik =
deg(i)

1 + vk
deg(i)−1

a

When vk = a, fik = 1. Therefore, the network dynamics reduce to the original network
dynamics in very specialized network states. A few examples are a BCC complete graph of
N = 2, a cycle with even N in which the states of the nodes alternate between two values,
and any connected graph that has reached consensus. We require this behavior in these
specialized situations, as a graph in which everyone looks equally smart should reduce to a
model that does not account for intelligence. Also, ∂fik/∂vk < 0 and ∂fik/∂a > 0: node
k looks less smart as it drifts away from consensus with members of Nk, and node k looks
smarter as the other members of Ni drift away from consensus with their neighbors. Finally,
the variation with degree looks like the following:

∂fik
∂ deg(i)

=
a(a− vk)

[a+ vk(deg(i)− 1)]2

When node k has average intelligence, increasing the degree of i makes no difference to node
k’s perceived intelligence. When vk < a (vk > a), increasing the number of i’s neighbors
makes node k look smarter (dumber). This is quite realistic, as a student who performs
better than average in a class of 100 should be perceived as relatively smarter than one who
performs better than average (by the same margin) in a class of 10, assuming both classes
are made up of similar students.

The effect of perceived intelligence on (σ, d) dynamics is also fairly simple and intuitive: it
scales the nullcline for the pair (σik, d

out
i ) by the factor fik, which can be seen by setting

Equation 4.2 to 0 and comparing to the original formula for the nullcline (Equation 3.1).
Defining the nullcline for the pair (σik, d

out
i ) as d0f (or e0f in dimensionless form), we have:

d0f (σik) = fikd0(σik) , e0f (sik) = fike0(sik) (4.3)

Now, different pairs of (σ, d) have different nullclines that are time-dependent, which intro-
duces heterogeneity in the dynamics. We should expect this fact to reduce the ability of the
graph to break. As seen in the reduced dynamics of Section 3.3.2, graph breakage occurs in
special configurations that cross the boundary for σ̇ = 0 and do not return. We now revisit
this system with the updated utility model.
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4.1.1 Reduced System Dynamics

There are many possibilities to consider when adding initial states to the reduced system.
Keeping with the spirit of the reduced system, we consider the case where one individual is
smarter than all the others who have the same average intelligence. For odd N , this is easy
to construct. An individual node is smartest when its state is the average of its neighbors’
states:

arg min
xi∈R

vi =
1

deg(i)

∑
j∈Ni

xj (4.4)

Defining node i as the smart individual, we simply set xj (j 6= i) to alternate between
two values for all remaining individuals in the complete BCC. This results in the desired
distribution of one smart individual amongst equally average-intelligence individuals. Setting
xj(t0) = ±c and xi(t0) = 0, we compute the following values for perceived intelligence (where
i is the smart individual and nodes j and k denote other individuals):

fji(t0) =
(N − 1)(2N − 1)

N2 −N + 1
(4.5a)

fjk(t0) =
(N − 1)2

N2 −N + 1
= fji(t0)

N − 1

2N − 1
(4.5b)

fij(t0) = 1 (4.5c)

Note that these values do not depend on c = |xj(t0)| due to the symmetry of the intelligence
distribution. Strictly speaking, we have two choices for the smartest individual to keep the
system reduced: node 1 or node 2. However, even if we allow one of the nodes in group 3

to be the smartest individual, the result is always the same steady state regardless of the
direction of the small perturbation δa12.

The steady-state structure is always a symmetric BCC star with the smartest individual as
the leader. This result is a direct consequence of the initial condition. At t0, the system is
not close to a steady-state. The values for σ̇ now appear as the following:

σ̇mn = fmnB
′(σmn) + fnmB

′(σmn)− 2µ(doutm + doutn ) = 4µ

(
d0
fmn + fnm

2
− doutm + doutn

2

)

fij(t0) + fji(t0) =
3N2 − 4N + 2

N2 −N + 1
> 2 for N > 3

fjk(t0) + fkj(t0) =
2(N − 1)2

N2 −N + 1
< 2 for N > 0

It is now harder (easier) for σ̇ij (σ̇jk) to be negative in terms of average costs. Indeed, the
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Figure 4.1. Nonlinear reduced dynamics with intelligence for ρ = 0.65, τ = 0.11, µ = 1.5,
N = 11 > Nu = 8, and δb12 = 0.001. The initial state has x1(t0) = 0.5, and the other xj(t))
alternate between 0 and 1. The state dynamics are modeled without any noise to achieve a
steady state in the network structure. For (b) the nullclines with intelligence are denoted by
the convention in Equation 4.3 for the initial condition (i.e. t = t0). The nullclines shift to e0(s)
over time as the state reaches consensus. Note that node 1 remains the smartest individual for
all time by the symmetry seen in (a). This is not always true for general graphs and initial
conditions.

initial condition has σ̇ij > 0 and all other σ̇ < 0, which leads to the star configuration. The
linearization has changed, but the dominant behavior at early times is still a reallocation
of resources; the previous argument that the early behavior largely determines the steady-
state is still applicable. Essentially, intelligence has separated the nullcline for the smartest
individual from the others. Figure 4.1 shows the evolution with node 1 as the smartest
individual and δb12 = 0.001. Node 1 remains the smartest individual throughout the entire
time period, as can be seen by Figure 4.1(a). Indeed, x1 ≈ 0.5 for all time which is extremely
close to the mean of the other xj at every time step. The highly nonlinear motion for s > 1.2

occurs at very long times (i.e t/ρ2 > 20) when the state transitions from having one leader to
consensus, where all nodes have equal intelligence. Once this occurs, the dynamics reduce to
the original model without intelligence, and the states fall onto the original nullcline e0(s).

We have found that perceived intelligence eliminates the breakage problem for the reduced
system by introducing heterogeneity in utility functions. This makes it less probable for a
(σ, d) state to cross a boundary line (such as when σ̇ = 0), since the nullclines no longer
coincide as often during the system’s evolution. In general, perceived intelligence does not
prevent graph breakage, but it makes it harder to attain due to the coupling with state
dynamics. We now must have a very specialized network structure and a very specialized
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state structure to have the nullclines coincide in a manner conducive to graph breakage. In
other words, we have added O(N) complexity to the network dynamics.

We now focus on the effects of perceived intelligence on other aspects of consensus. Our main
concerns are with robustness of consensus and convergence speed, but we also examine other
common time domain specifications such as overshoot for the state dynamics. All of these
quantities depend on the ability to choose leaders. The perceived intelligence factor has a
built-in ability to dynamically choose leaders throughout consensus, which has ramifications
on consensus dynamics.

4.1.2 Dynamic Leader Selection and Overshoot

In the reduced system above, the initial leader (the smartest individual) always remained
the leader. However, this is not always the case for general graphs and initial conditions.
Rather, perceived intelligence implicitly encodes the ability to dynamically select leaders
based on the network configuration and state. Perceived intelligence is basically a form of
positive feedback: smart individuals attract collaborations and become smarter over time
as their neighbors begin to follow their states through Equation 2.3a. When the graph is
highly heterogeneous, either in the states xi or the network structure (or both), neighbors
who begin following a smart individual may eventually overtake this leader in intelligence
and become new leaders. Additionally, the leader at any given time tracks the state of the
next-smartest individuals. This drift can also result in the replacement of the leader by
another node or the formation of "oligopolies" in which multiple nodes form a group in a
collective leadership role. We have found all of these behaviors in simulations.

Rather than characterize the many types of leadership that are possible, we focus on the
effects of dynamic leader selection on consensus characteristics. We continue to analyze the
complete graph, as this allows us to plot the N values of absolute intelligence 1/vk as a
proxy for plotting all (typically O(N2)) fij values over time. We keep the initial condition
for x the same as with the dynamics in the previous section, with node 1 as the clear leader
and all other nodes as average in intelligence. This construction allows for comparisons with
previous results. Finally, we add Gaussian noise to the initial conditions for the network
structure. For illustrative purposes, we use the same system of N = 11 but change the
initial condition so that aij(t0) = N (10, 32), which represents a gross initial over-investment
of resources.

State Dynamics Figure 4.2 shows the state dynamics for the resulting network both with
and without intelligence. We also compare both of these conditions with a static network
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(b) State dynamics with intelligence
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(c) State dynamics with static network

Figure 4.2. State dynamics with noisy initial network conditions: ρ = 0.65, τ = 0.11, µ = 1.5,
N = 11 > Nu = 8, and aij(t0) ∈ N (10, 32). The state dynamics are simulated without noise and
initial conditions set x1 = 0.5 and the other xj alternate between 0 and 1. For (c) the network
is static and remains at its initial condition for all time. This configuration results in speedy
convergence, but it comes at extremely high costs for all individuals since they over-invest into
collaborations. We account for such costs in Section 4.3.

stuck at the initial condition. Intelligence has a smoothing effect for the state dynamics. We
can define the overshoot (OS) of a particular state xi as the following:

OS =
|xi(t1)− xi(t0)| − |xi(tf )− xi(t0)|

|xi(tf )− xi(t0)|
(4.6)

where xi(tf ) is the final value at consensus and xi(t1) is the value of the state at its maximum
distance from the initial condition.27 Even though the overshoot for node 1 is the greatest, we

27The absolute values account for the fact that the consensus state may be on the opposite side of the
initial condition as the direction in which the maximum deflection occurs.
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Figure 4.3. (a) Histogram of percent change in overshoot with intelligence (shown with a
bin width of 2). 4000 simulations with the conditions of Figure 4.2 were conducted, and the
maximum overshoot value for one of the average-intelligence nodes was compared between the
cases with and without intelligence. A value between -100 and 0 indicates a reduction in
maximum overshoot for the state dynamics (see Equation 4.7). The median is -43 and the
distribution is highly skewed towards overshoot reduction.
(b) % Change in OSmax vs. N . At each value of N ∈ {3, 5, 7, ..., 29}, 1000 simulations were
carried out with the same Gaussian initial conditions as in Figure 4.2. The centerline is the
median, and the error bars span the first to third quartiles of the data. The distributions are
highly skewed, so these measures are more suitable than the mean and standard deviation.

neglect node 1 because its overshoot is unreasonably magnified by the proximity of consensus
to its initial state. Considering only the average-intelligence nodes, overshoot drops from
19.4% to 10.3% with intelligence for this case, a roughly 47% reduction. Figure 4.3(a) shows
similar results for this simulation repeated 4000 times with initial conditions chosen from
the same Gaussian distribution. The change in overshoot was calculated according to the
following formula:

% Change in OSmax = 100
OSmax,intel −OSmax

OSmax
(4.7)

where OSmax is the maximum overshoot for one of the average intelligence nodes without
intelligence dynamics, and OSmax,intel is the maximum overshoot for one of the average
intelligence nodes with intelligence dynamics activated. The resulting distribution is highly
skewed towards reducing maximum overshoot, with a median value of −43%. Figure 4.3(b)
repeats these statistics with N ∈ {3, 5, 7, ..., 29}. The resulting distribution (plotted with the
median spanned by the first and third quartiles) decreases in spread with N and approaches
an asymptote of roughly −40± 10, indicating a clear reduction in maximum overshoot with
intelligence but definitely not an elimination of overshoot altogether.
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Figure 4.4. Dynamic leader selection and overshoot. We show the same simulation from Figure
4.2, tracking both the state dynamics (with intelligence) and the absolute intelligence. The
leader always has vmin/v = 1. Exchange of leadership occurs when the current leader’s state
crosses with another node’s state. This can only occur if the leader drifts away from consensus,
which is the same condition for overshoot of the leader’s state. At long times, (t > 25 in this
case) the states converge to all have the same absolute intelligence (which is not shown here).

The intuition behind this smoothing effect is the following: with intelligence, the dynamics
adapt accordingly to new leadership, thereby preventing the nodes from following individuals
who are no longer close to consensus. Without intelligence, the network evolution does not
care about the state dynamics, so the probability that the network evolution and state dy-
namics converge in a perfectly complementary manner is very small. Whenever the network
moves in a direction that does not perfectly coincide with the motion of the consensus state,
overshoot results. In this way, intelligence reduces the amount of overshoot compared to the
original utility model. Compared to the static network, however, intelligence still produces
a significant amount of overshoot in the state dynamics. Additionally, intelligence induces a
different type of overshoot, one that is associated the graph structure rather than the state
dynamics. This phenomenon is directly related to dynamic leader selection.

To see the relationship between network overshoot and dynamic leader selection, we need to
track intelligence. Figure 4.4 shows the normalized absolute intelligence (1/vk(t)) for each
node over time with the same initial condition as in Figure 4.2. The normalization is chosen
such that the smartest individual always sits at 1, thereby making the normalization factor
maxk 1/vk(t) which corresponds to mink vk(t) := vmin(t).28 We also show the state dynamics
as in Figure 4.2 with every node labeled individually. Leadership exchange occurs when the
current leader’s state drifts far enough that its state meets and then exceeds the state of

28Note that this value changes with time.
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another individual. This can be seen by the numerous exchanges of leadership from node 1
to 9, 9 to 2, 2 to 10, etc. The major point of concern regarding network overshoot is the
dramatic refocus of leadership even as the states reaches consensus. Although the frequency
of leadership exchange slows down as the system asymptotically approaches consensus, the
former leaders often exhibit enormous drops in intelligence (such as node 1), and other nodes
exhibit similarly dramatic rises in intelligence (such as node 4). These swings in intelligence
are undesirable because they cause the graph structure to make dramatic changes even as
the states reach consensus: a node that is at one point a focus of attention quickly becomes a
fringe follower as its intelligence reduces. This behavior is related to state overshoot because
the nodes that start following a certain leader swing too quickly towards its state, thereby
overshooting it. As with any system, overshoot results from insufficient damping. In this
case, we are not damping the response to perceived intelligence.

Robustness and Convergence Speed The dramatic changes in graph structure due to
the undamped responses to intelligence have direct consequences on the robustness and speed
of convergence for the network. Figure 4.5 compares the speed of convergence and robustness
of both network models. For both metrics, the case with intelligence has better average
values,29 but intelligence also creates wildly oscillatory behavior. This can be attributed to
the swings in network structure due to hasty leader selection and overshoot. In particular,
note that the local minima (maxima) of λmin correlate with the local maxima (minima)
of H2. Recall that the homogeneous complete graph has the best convergence speed and
smallest H2-norm. Then, loosely speaking, the rising (falling) of λmin and falling (rising)
of H2 coincide with the state moving towards being more (less) complete. In this way, a
local extremum on either graph corresponds to a swing in behavior for network evolution.
Sharp points correspond to edges vanishing or reappearing. Comparing these plots with
Figure 4.4(b), we see that the swing in behavior follows an exchange in leadership by a time
delay of between 0.25 and 0.75 units of time, which is O(ρ2) in this case. This value makes
intuitive sense because the network evolves on a timescale of ρ2, so it should take O(ρ2)

time to respond to leadership exchange. The local maxima of λmin occur at the half-way
transition points between following one leader to following the new leader, the point at which
the graph "fills in" its edges and (locally) becomes as complete as possible before swaying
towards the new leader.

To see these oscillations more clearly, consider the simple case of two symmetric BCC stars
with N = 3, one with node 1 as the leader, and another with node 2 as the leader. In Figure
4.6, we show the weighted average of these two graphs, with a weight of α for the graph

29We aim to maximize convergence speed and minimize the H2-norm.
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Figure 4.5. Robustness and convergence speed with and without intelligence for the same case
as that in Figure 4.2. With intelligence, the dramatic swings in graph structure due to hasty
leader selection and overshoot result in oscillations for both metrics.
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Figure 4.6. Convergence speed and robustness for the weighted average of two symmetric BCC
stars (N = 3) that are at equilibrium. The coefficient α is the weight of the graph with node 1
as the leader, and 1− α is the weight for the graph with node 2 as the leader. The extremum
corresponds to the point at which the graph becomes as complete as possible, the halfway point
between both stars. Changing α mimics the effect of leadership exchange and the resulting
swings in graph structure for a network with perceived intelligence dynamics.

with node 1 as the leader, and 1 − α as the weight of the other. The maximum λmin and
minimum H2 occur when the graph is as complete as possible, the midway point between
the two stars. This figure mimics the effect of leadership exchange in a simplified way. The
real system does not necessarily swing all the way to a star before exchanging leaders again.
In addition, the smooth behavior is often interrupted by an edge vanishing or reappearing,
which creates the kinks in Figure 4.5(a).
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Main Deficiency of Perceived Intelligence The overall drawback to the perceived
intelligence model is that it lacks a damping factor. This results in an overdramatic response
to changes in state, as illustrated by overshoot and dynamic leader selection. The ability
to dynamically update leaders is not intrinsically bad. Indeed, it is very useful in cases
where we may have node failures, such as when a sensor fails on a robot amidst a mobile
sensing network. In our present case, however, the system hastily forgets about nodes who
were initially intelligent, and new leaders arise simply because of overshoot. This "mob
mentality" can result in the selection of individuals who are not necessarily the best choices
as leaders. Such suboptimal performance can be amended if we allow agents to not only track
the current intelligence of their neighbors but also retain a history of perceived intelligence.

4.2 Perceived Intelligence with History

In the model system of students collaborating on a homework assignment, we would not ex-
pect students to merely track current intelligence when considering collaborations. Rather,
we expect a student to take into account the past history of a neighbor’s actions, as dictated
by his/her perceived intelligence over time. This intuition motivates the model of an esti-
mation scheme in which nodes estimate the perceived intelligence of their neighbors based
on a certain "sliding window" of past states.

Literally storing the previous intelligence states of neighbors is both inefficient and unreal-
istic. In the spirit of recursive estimators such as the Kalman filter, we define a recursive
discrete-time update rule for perceived intelligence. In this new model, we define the variable
f̂ as the estimated value for perceived intelligence, as opposed to f which is the actual value.
Then the update rule is written as follows in discrete time steps n:

f̂n = βf̂n−1 + (1− β)f , β ∈ [0, 1] (4.8)

where β defines the weight with which we take the past estimation of intelligence. As β → 1,
our window extends to the beginning of time, whereas β → 0 reduces to the model without
history. To convert this model to continuous time, we first rewrite Equation 4.8 as the
following:

f̂n − f̂n−1

∆t
=

1− β
∆t

(
f − f̂n−1

)
(4.9)

where ∆t is the time step between the discrete states. Note that β = β(∆t). Indeed, as ∆t

gets large, we prescribe β → 0: since the state could have changed dramatically between time
steps, we are better off just following the new value for intelligence. Similarly, as ∆t→ 0 we
prescribe β → O(1−∆t): the non-homogeneous term adds very little to our current estimate,
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so it does not need a large weight. This reasoning justifies the fact that 1−β
∆t

remains finite
as ∆t→ 0. Then we can write the continuous time dynamics as:

˙̂
f = γ

(
f − f̂

)
, γ :=

1− β
∆t

∈ [0,∞) (4.10)

As γ → 0, the nodes maintain a history over all time and do not look at the new values for
intelligence (i.e. the estimates remain fixed at the initial values). As γ → ∞, the nodes do
not maintain history at all. Therefore, γ governs the amount of damping for the response of
each node to perceived intelligence. The updated network dynamics now look like:

ȧik = f̂ikB
′(σik)− C ′(douti ) (4.11a)

˙̂
fik = γ

(
fik − f̂ik

)
(4.11b)

where f̂ik(t0) = fik(t0). Thus, the overall system now contains state dynamics (ẋ), network
dynamics (ȧik), and intelligence dynamics ( ˙̂

fik).

4.2.1 Effects of History on Network Dynamics

We have introduced history as a method to dampen the swings in graph structure. As we
illustrated above, these swings can be tracked by oscillations in the speed of convergence
and the robustness over time. Figure 4.7 shows the effect of varying γ on simulations using
the same initial conditions as those in Figure 4.2. As predicted, large histories (γ < O(1))
reduce both the amplitude and frequency of oscillations. For short histories (γ > O(1)),
the variations approximate those in Figure 4.5 without history, with a short time delay that
diminishes as γ increases. At γ = O(1), the oscillations are delayed by ∆t = O(1) but occur
at roughly the same frequency, and the amplitude of oscillations is roughly the same if not
slightly larger at some points. These results are simple to explain by noting how the history
dynamics couple with the intelligence and network dynamics. According to Equation 4.11b,
the estimated intelligence dynamics evolve on the timescale 1/γ. For small γ, the variations
in leadership and intelligence are extremely damped, whereas for large γ they approximate
the undamped case without history. At γ = O(1), the estimated intelligence resonates with
changes in leadership. We know by Figure 4.4 that the changes in leadership occur on a
timescale that is O(1) for intelligence without history, so this must also be the case for
history with γ = O(1). Indeed, for γ = O(1), f̂ follows f with an O(1) time delay (by
Equation 4.11b), which is short enough to respond to all changes in leadership. At the same
time, however, this delay is long enough that the graph can make slightly more dramatic
swings: since f̂(t0) = f(t0) and the network takes an extra O(ρ2) delay to respond to changes
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Figure 4.7. Robustness and convergence speed with history for the same case as that in Figure
4.2. For γ < O(1), both the amplitude and frequency of oscillations is diminished. For γ > O(1),
the metrics approximate those without history with a time delay that diminishes as γ grows.
At γ = O(1), history dynamics resonate with state dynamics such that the frequency and
magnitudes are roughly the same (and sometimes slightly larger), with an O(1) time delay.

in f̂ , we induce the capability to swing slightly more in a certain direction for O(ρ2) time.
Based on this analysis, it is evident that we should have γ < O(1) for history to provide
significant benefits in damping network swings.

In addition to damping the response to leadership exchange, we expect history to also slow
down the rate of leadership exchange. Since γ > O(1) essentially mimics intelligence without
history, we consider only γ ≤ O(1). Figure 4.8 compares the absolute intelligence dynamics
for the extremes γ = 0.01 and γ = 1. For t > 2, the former case has much less frequent
leader exchange, whereas the latter case looks extremely similar to the situation without
history in Figure 4.4(b). This is expected by the analysis of γ = O(1) above. However, the
frequency of leader exchange for γ = 0.01 at t < 2 is troubling, since we we clearly want
node 1 to remain the leader for all time. This problem is related to the model’s inability to
damp the leader’s overshoot, which we discuss next.

4.2.2 Effects of History on State Dynamics

As opposed to its ability to easily damp swings in graph structure, history is not able to
uniformly damp overshoot in state dynamics. Figure 4.9(a) shows the same simulation
conditions of Figure 4.2 with γ = 0.01. The extremely large overshoot for one of the average
intelligence nodes occurs due to the motion of node 1. With γ = 0.01, perceived intelligence
estimates are essentially fixed and the values given by Equation 4.5 hold for O(1/γ) time.
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(b) γ = 1

Figure 4.8. Absolute intelligence dynamics with history. Leadership exchange is less frequent
with longer histories.

Thus, node 1 is considered to be the leader for a long period of time. Additionally, node 1’s
beliefs about all neighbor’s are also fixed; its model is reduced to the one without intelligence
since it believes all neighbors have equal intelligence. Therefore, node 1 moves according to
the original utility model without intelligence, and other nodes follow its motion very closely,
resulting in large overshoot for those nodes j whose value for aj1(t0) happened to be much
larger than all other ajk(t0) (k 6= 1). The magnitude of overshoot decreases with increasing γ,
as shown in Figure 4.9(b). Here, we track the change in maximum overshoot with intelligence
by the following formula:

% Change in OSmax,intel = 100
OSmax,hist −OSmax,intel

OSmax,intel
(4.12)

where OSmax,hist is the overshoot with the given value of γ for history and OSmax,intel still
represents the overshoot for intelligence without history. Despite the large spread at small
γ, the lower quartile only falls into a mode of reduction at γ = 1, and we require γ < O(1)

for reasonable damping of network swings.

We have found that the model of perceived intelligence with history fails to properly account
for the motion of a true leader. What we require in this case is for the leader to remain
in a leadership position. This can be achieved in multiple ways, such as having the leader
smoothly equalize its investment across all neighbors or simply remain fixed at its current
state. However, it is important to emphasize that the case of a single global leader is very
specialized. A realistic network such as a small-world graph is not complete, and multiple
nodes act as local leaders; having a single global leader is improbable over such a graph.
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(b) Change in overshoot with intelligence over γ

Figure 4.9. (a) State dynamics for the exact initial condition as in Figure 4.2 and γ = 0.01.
Since the intelligence estimates are essentially fixed, the motion of node 1 causes overshoot for
any average-intelligence nodes who happen to follow it strongly in the initial condition, leading
to dramatic overshoot.
(b) Change in overshoot with history. 4000 simulations were conducted at each γ with N = 11
and Gaussian initial conditions as in Figure 4.2. The median is shown spanned by the first
and third quartiles in error bars. The movement of node 1 causes worse overshoot with longer
histories: other nodes believe it is still smart despite leadership exchange taking place.

The overall problem we have posed is designed to work in these situations, where a global
leader is not immediately discernible. In the complete graph above, we saw that any motion
of the global leader was sub-optimal for reaching consensus. However, the motion of a local
leader towards its neighbors may improve performance depending on the graph and state
structures. In this light, we continue to evaluate the utility model with perceived intelligence
and history as a distributed heuristic for reaching consensus. This analysis will also yield
further methods by which to address problems with the dynamics of (global or local) leaders.

4.3 Evaluations of Network Performance

Perceived intelligence and history sophisticate the original utility model by attempting to
overcome problems such as network breakage and dramatic swings in network structure. We
now evaluate the performance of our model with respect to consensus dynamics. Calculating
the speed of convergence and robustness is simple for a static network. Since L̂ is fixed, the
values λmin and H2 are good metrics. However, both of these values change with time in an
evolving network, and it is not enough to just track the instantaneous values over time.
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Effective Speed At first glance, it might appear adequate to merely keep a running average
of λmin(t). However, this does not account for the fact that slower λmin delays the time at
which consensus is reached. Instead, we define the effective speed as:

λemin =
1

ts
(4.13)

where ts is the value at which the states have reached some threshold near the final consensus
value. When simulating with noise, the consensus value changes with time, so it can be taken
as the average of the states at long times. Also, the threshold we choose should depend on
the magnitude of ξ(t), the noise in the state dynamics (Equation 2.3a). As we have been
simulating without noise, we can choose an arbitrarily small threshold: we choose 99% so
that ts is the time after which all states remain within 1% of the final consensus state (which
is fixed when there is no noise). The value of ts is analogous to the settling time of a
conventional SISO system.

Effective Robustness Speed is primarily about convergence characteristics, whereas ro-
bustness is a metric for consensus. In this way, looking at cumulative snapshots of H2(t)

while the network is still in its transient phases does not make physical sense for evaluation.
Rather, we measure the effective robustness using a snapshot value for the effective H2-norm:

He
2 = H2(ts) = H2

(
1

λemin

)
(4.14)

Effective robustness (proportional to the inverse of He
2) characterizes the response of the

system to further perturbations once it has settled to a near-consensus state.

In Figure 4.10, we calculate the effective speed and robustness over different values of γ, com-
pared with the cases of intelligence without history and no intelligence. In these simulations,
we remove the constraint of having only one leader and instead have xi(t0) = N (0.5, 0.22).
The comparisons are as follows:

%Change from ∗e = 100
∗ehist − ∗e

∗e
(4.15a)

%Change from ∗eintel = 100
∗ehist − ∗eintel
∗eintel

(4.15b)

where ∗ is a placeholder for either λmin or H2. Compared to the system without intelligence,
the average speed increases as history decreases (γ increases) and the system approaches
intelligence without history. Equivalently, intelligence without history performs better than
systems with long histories. This result illustrates the notion that despite the benefit of
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(d) Comparison to intelligence model (w/o history)

Figure 4.10. Effective speed and robustness. 500 simulations were carried out at each value of
γ ∈ {0.01, 0.03, 0.1, 0.3, 1, 3, 10} with ρ = 0.65, τ = 0.11, µ = 1.5, N = 11, aij(t0) ∈ N (10, 32),
and xi(t0) ∈ N (0.5, 0.22). These are compared with the cases of no intelligence and intelligence
without history. For (a) and (b) we plot the mean spanned by the standard deviation because
the distributions are relatively symmetric without outliers. For (c) and (d) we plot the median
spanned by the first and third quartiles to resist slight skew and outliers.

reducing swings in graph structure, long histories simply prevent nodes from responding
to changes in leadership. This leads to a slower effective speed than in a more adaptable
network. The effective robustness shows very little change when compared to either the
system without intelligence or the system with intelligence but no history. Nevertheless, we
see a slight minimum at γ = O(10−1), indicating that despite the lag induced by history, the
resulting damping of graph swings may help the network attain better absolute performance
to perturbations. We are careful not to read too much into this data due to the fact that 0%

change is within the margin of error for both plots. However, what appear as only marginal
improvements in performance are actually much better once we consider network costs.
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Accounting for Network Costs Neither λemin nor He
2 take into account the costs asso-

ciated with consensus. If absolute speed and robustness were all that mattered, we would
always prefer a static homogeneous complete BCC over any other network. Also, we would
not care about the magnitudes of aij since L̂ is normalized. This is unrealistic in two ways.
First, we should penalize "completeness" in systems, since a star configuration is generally
more efficient than a complete graph. Also, we should penalize the absolute magnitudes of
aij, since a homogeneous complete BCC with small aij is obviously more efficient than one
with large aij. We can account for both of these factors at the same time by defining the
network cost factor:

NC(t) =

(∑
i,j aij(t)

N2 −N

)∑
i,j

I(aij(t)) (4.16a)

I(aij) =

{
1 if aij > 0

0 if aij = 0
(4.16b)

The first term is the average value of a potentially nonzero entry in A, since there can be at
most N2−N nonzero links. This term penalizes the absolute magnitudes of aij. The second
term is an indicator variable that counts the nonzero elements in A, which penalizes systems
that are more complete than others. For a complete graph, NC(t) =

∑
ij aij, whereas for

a star, NC(t) = 2
∑

ij aij/N . Now we can define the cost-normalized effective speed and
H2-norm:

λcnmin =
λemin
NC(ts)

(4.17a)

Hcn
2 = NC(ts)H

e
2 (4.17b)

The appropriate reference values for the homogeneous complete graph at equilibrium are λcn∗min
and Hcn∗

2 . Note that these reference values depend on the magnitudes of aij at equilibrium
for the homogeneous complete graph, as opposed to λ∗min and H∗2 , which only depend on N .
A major benefit to absorbing NC(t) into the metrics for speed and robustness is that we
do not have to examine the graph structure explicitly to evaluate performance, despite the
fact the network has changed over time. This allows for analysis that is normally done over
static networks to easily extend to evolving networks.

Figure 4.11 shows the plots of Figure 4.10 updated to include NC(ts) (∗cn replaces ∗e in
Equation 4.15). The plots for cost-normalized effective speed are similar to those of Figure
4.10, but they are shifted so that the performance of the original model without intelligence is
now much worse than those with intelligence. Again, we see that the graph tends to be more
efficient with intelligence because nodes quickly find and follow smart leaders more intensely.
The cost-normalized effective robustness plots also experience this separation; the original
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(d) Comparison to intelligence model (w/o history)

Figure 4.11. Cost-normalized effective speed and robustness. The results from Figure 4.10 are
shown with the cost-normalization factors NC(ts) included. Now, the original utility model
without intelligence pales in comparison to the other models, as cost-normalization has induced
a separation of the models for both metrics. Intelligence without history performs slightly better
on average than intelligence with history, both in speed and robustness, but these two models
are roughly equivalent within the margin of error of the data spread.

model without intelligence is much worse than the models with intelligence. Although the
trends for the average value are now inverted, more simulations are needed to reduce the
spread and make more definitive statements. Without more data, we can only comment on
the fact that including cost-normalization has clearly separated the models with intelligence
from the original model in both speed and robustness. Coupling this result with the analysis
of hidden modes and graph breakage in reduced systems, we have good reason to discard the
original utility model and consider only the intelligence models (with or without history) for
further analysis.
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(a) Cost-normalized effective speed

3 5 7 9 11 13 15 17 19 21 23 25 27 29

−40

−20

0

20

N

%
C
h
a
n
g
e
fr
o
m

H
c
n

2
,i
n
te
l

(b) Cost-normalized effective robustness

Figure 4.12. Change in cost-normalized effective metrics with N . The conditions of Figure 4.10
were repeated with γ = 0.1 and N ∈ {3, 5, 7, ..., 29} (with 500 simulations at each N). Despite
the large spread of the data, we see that performance degradation increases with N . Since the
graph begins as a complete network, N approximates degt(i) ∀ i in the transient before the
system settles. This trend corroborates the intuition behind making γ depend on degt(i).

The Need for Degree-Dependent Histories It is clear that the models with intelligence
perform better than the model without intelligence. Also, history degrades performance for
systems that have a single global leader. For systems without a clear leader, current analysis
cannot yet make definitive claims regarding the effects of history. At this point, history
appears to change performance very little within the margins of deviation for the data
presented in graphs that begin as complete with N = 11.30 It is also important to consider
changes in performance with changing values of N .

Going back to the situation of students solving a homework problem, we expect the level
of history that each student tracks to depend on his/her centrality; it is much harder to
keep track of long histories for 100 neighbors than just 5 neighbors. This intuition predicts
that we should have γ increase with the instantaneous outdegree of a node, degt(i).31 Far
more than a prediction, this hypothesis is validated by data. Figure 4.12 shows the change
in performance for networks with γ = 0.1 and N ∈ {3, 5, ..., 29}. Because the initial net-
work conditions (aij(t0)) represent a complete graph, N acts as a rough approximation for
degt(i) ∀ i for the transient before the system settles. This allows us to easily test our hy-
pothesis without needing to track degt(i) for all individual nodes over time. Despite the large

30The graphs always settle into a sparse network structure as indicated by the values for λmin and H2 in
Figure 4.7.

31This value is similar to deg(i) except that degt(i) changes with time and is a directed measure. Specifi-
cally, degt(i) counts the number of nonzero aij(t).
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spread for the data, the trend of increased performance degradation with N is undeniable.
We take this observation as sufficient motivation for requiring that γ = γ(degt(i)). With
this sophistication, the problems we encountered with a single global leader and history will
also be assuaged; leaders will keep smaller histories than other nodes, thereby reducing the
overshoot problems we encountered in Section 4.2.2. Coupled with the changes to ȧij we
proposed for leaders in Section 4.2.2, this modification will surely improve the performance
of our utility model in regards to both speed and robustness.
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5 Conclusions and Further Work

This study focused on developing a distributed consensus protocol for adaptive multi-agent
systems. The stated requirement for such a protocol was that it should be locally adaptive, i.e.
changes to the network structure should not require knowledge of global network properties.
A utility maximization approach was adopted, whereby local updates to network structure
resulted from the optimizations of individual utility functions by all nodes in the network.
Beginning with a utility function inspired by economic and sociological models, various
sophistications were added to this function to achieve desired behaviors in state and network
dynamics. In a larger sense, we have developed a fairly robust model capable of adapting to
numerous environments and applications through the specification of only a few parameters.

The protocol in its current form evolved quite organically from the model presented in
[5]. Dimensional analysis of this model revealed the network timescale as ρ2, an important
characteristic which depends solely on the point of inflection for the benefit function in utility;
this factor remains the network timescale for the current protocol. Further analysis of the
original model revealed two major shortcomings. The first had to do with redundancy: the
model of [5] fails to respond to certain cyclical modes of collaboration between individuals,
despite the fact that these hidden modes (almost always adversely) affect the state dynamics.
Additionally, the model resulted in graph breakage for a significant class of graphs. Both of
these issues made manifest the underlying deficiency of the utility model: it was uncoupled
from the state dynamics.

Perceived intelligence, a factor inspired by intuitive notions of network behavior, couples
the state and network dynamics in a favorable manner and satisfies the requirement of
keeping the network locally adaptive. Namely, perceived intelligence significantly reduces the
problem of graph breakage by inducing greater degrees of heterogeneity in network dynamics.
It also reduces overshoot in the state dynamics by providing positive feedback between the
state and network dynamics. Nevertheless, this positive feedback also results in interesting
behaviors regarding network overshoot, the effect of undamped responses to changes in
intelligence and leadership. Although we recognize that dynamic leader selection is in fact
very favorable for creating robust systems, we also realize that swings in graph structure as
nodes unnecessarily gravitate between leaders is sub-optimal behavior for reaching consensus.
Such behavior elicits the need for damping the response to changes in intelligence.

Adding a recursive estimation scheme to perceived intelligence, intuitively presented as intel-
ligence history, provides this damping factor. It was found that beyond a certain threshold
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(γ < O(1)) increasing the length of history (reducing γ) reduces both the magnitude and
frequency of oscillations for network structure, as reflected in the oscillations of the "snap-
shot" values for the convergence speed and robustness. More importantly, history encodes
the ability for a network to implicitly "learn" about leaders over time, thereby making dy-
namic leader selection even more targeted than in the case of intelligence without history.
However, we have found that large histories are detrimental to systems that have a single
global leader due to the model’s inability to cope with the overshoot of leaders.

While creating the current consensus protocol, we have also developed metrics for consensus
performance that take into account network costs. Such cost-normalized effective metrics
clearly render the models with intelligence as superior to the original model of [5]. Using
these metrics, we have been able to predict performance enhancements if the length of a
node’s history for intelligence estimation varies inversely with its (unweighted) outdegree. It
is expected that incorporating this effect into our model will reduce problems with leader
overshoot as well.

More generally, an important characteristic of our model is its ability to easily incorporate
newer sophistications and improvements. We have already mentioned the need for making γ
depend on the nodal outdegree as well as resolving the dynamics of leaders. Other changes
could involve introducing heterogeneity into the cost functions for utility. For example, one
might consider nodes that have high costs associated with low intelligence, thereby providing
an incentive for such nodes to become leaders. Also, one might consider an additional cost
associated with following an exogenous signal. Such a configuration would be relevant to
systems that require consensus accuracy, an aspect of consensus dynamics that we have not
yet explored with the current protocol.

In addition to improving the consensus protocol, we should also extend our analysis to general
graphs. It is important to begin analysis with canonical graphs such as complete graphs or
stars, as such network extremes offer important results regarding the analytical behavior of
the protocol. Having performed such analysis, we can now begin testing our model on more
realistic systems such as small-world graphs and Erdös-Rényi random graphs. In particular,
we expect that statistical analysis over small-world graphs may provide intuition for dealing
with the dynamics of local, but not necessarily global, leaders.

Having discovered numerous frontiers to explore in further research, we pause to reflect on
the significance of the framework we have developed. The distributed protocol presented here
is by no means guaranteed to provide globally optimal performance. It is a heuristic that
tackles the problem of decentralized control over adaptive networks, a domain where globally
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optimal solutions are often analytically intractable or otherwise constrained in applicability
to realistic networks. In this sense, we have created a method analogous to PID control
in a domain where the analogue to a linear quadratic regulator is difficult to define. Our
system requires very few inputs, just those associated with utility and intelligence history,
and it is intentionally built upon a very generic utility model: a sigmoidal benefit subtracted
by a quadratic cost. Despite this deceptively simple and intuitive formulation, we have
discovered extremely rich behavior and promising performance with respect to addressing
noisy consensus dynamics. Overall, we believe our distributed consensus protocol has the
ability to develop into a mature technique for controlling networked systems. In this way,
the implications of expanding upon the model presented here reach across a range of fields
and applications.
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A Theorems and Derivations

Theorem A.1. (Gershgorin Circle Theorem) For an n × n matrix A with elements aij,
define Ri :=

∑n
j 6=i |aij| (the sum of the absolute values of the nondiagonal entries in the i-th

row). Every eigenvalue lies in at least one of the Gershgorin discs defined by center aii and
radius Ri in the complex plane.

Proof. (Adapted from [7]) For the eigenvector x with eigenvalue λ, choose i ∈ {1, 2..., n}
such that |xi| = maxj |xj| > 0. Since Ax = λx, then∑

j 6=i

aijxj = λxi − aiixi

Dividing by xi and taking the absolute value yields:

|λ− aii| =
∣∣∣∣
∑

j 6=i aijxj

xi

∣∣∣∣ ≤∑
j 6=i

∣∣∣∣aijxjxi

∣∣∣∣ ≤∑
j 6=i

|aij| = Ri

since |xj| ≤ |xi| for j 6= i.

Corollary A.2. The eigenvalues λ of a normalized Laplacian matrix (L̂ ∈ RN×N) satisfy
Reλ ∈ [0, 2].

Proof. By construction, L̂ii = 1 and the Gershgorin discs satisfy Ri = 1. Then, by Theorem
A.1, |λ− 1| ≤ 1, so 0 ≤ Reλ ≤ 2.

Lemma A.3. Σss is the solution to L̄Σss + ΣssL̄
T − 2σ2IN−1 = 0.

Proof.
Σ̇(t) = E

[
ẏyT + yẏT

]
= E

[(
−L̄y +Qξ

)
yT + y

(
−L̄y +Qξ

)T]
= −L̄Σ− ΣL̄T +QE

[
ξyT

]
+ E

[
yξT

]
QT

The time dependence of y is given by the standard variation of constants formula: y(t) =
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e−L̄ty(0) +
∫ t

0
e−L̄(t−τ)Qξdτ , which yields the following:

E
[
yξT

]
= e−L̄tQE

[
x(0)ξT (τ)

]
+

∫ t

0

e−L̄(t−τ)QE
[
ξ(t)ξT (τ)

]
dτ

=

∫ t

0

e−L̄(t−τ)Qη2δ(t− τ)dτ

= Qσ2

∴ Σ̇(t) = −L̄Σ− ΣL̄T + 2η2IN−1

The steady state solution is constant, i.e. limt→∞ Σ̇(t) = 0, whereby:

L̄Σss + ΣssL̄
T − 2η2IN−1 = 0

Proposition A.4. A homogeneous complete BCC at equilibrium is always unstable when
N ≥ Nu, for Nu given by Equation 3.3a.

Proof. The homogeneous complete BCC is confined to the line d = N−1
2
σ. Then an equilib-

rium is guaranteed to be unstable as long as this line only crosses the nullcline for σ < ρ,
which implies N−1

2
ρ > d0(ρ). In dimensionless form, this yields the constraint: N−1

2
> 1

m
√
r
.

Therefore, we have:

N >
2

m
√
r

+ 1

The smallest integer satisfying this inequality (Nu) is found by adding one to the result and
then taking the floor:

Nu =

⌊
2

m
√
r

+ 2

⌋

Proposition A.5. A homogeneous complete BCC at equilibrium is at least marginally stable
when N ≤ Ns, for Ns given by Equation 3.3b.

Proof. The condition N ≤ 2
m
√
r

+ 1 is sufficient for the line d = N−1
2
σ to cross the nullcline

at σ ≥ ρ. However, we want the only crossing to occur at σ ≥ ρ. If this is not the first
crossing, then based on the shape of d0(σ), it must either be the second crossing or the third
crossing. In that case, there must be a smaller value of N for which the nullcline and the
line d = N−1

2
σ touch tangentially. This line has the slope C and satisfies the following two

conditions: Cσs = d0(σs) and C = d′0(σs) for some critical value σs. This yields the following
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solution for ss = σs/ρ from which C can be calculated:32

ss =
5−
√

9− 16r

8

When r > 9
16
, there is no real solution, so the condition N ≤ 2

m
√
r

+ 1 gives the critical value
of N below which the only crossing occurs at σ ≥ ρ.

When r = 9
16
, the tangency point is also the point at which the two curves intersect because

d′′0(5
8
ρ) = 0. Then Cσ must stay above the nullcline for σ > 5

8
ρ and the conditionN ≤ 2

m
√
r
+1

is again strong enough for the only crossing to occur at σ ≥ ρ.

When r ≤ 9
16
, ss gives the value at which the two curves are tangent. However, the condition

N−1
2

< C is not enough for the crossing point to occur at σ ≥ ρ. We also need C ≤ 1
m
√
r
. The

latter condition becomes algebraically unfriendly, so it is easier to reason in the following
manner. We know that if C ≥ 1

m
√
r
, then the condition N ≤ 2

m
√
r

+ 1 will necessarily be
strong enough to be an upper bound on N . If C is low enough, then N−1

2
< C will be the

condition we use to give an upper bound on N . Thus, we can easily get an upper bound on
N by just taking the minimum of these two conditions. In practice, this requires less work
than checking boundaries for the condition C ≤ 1

m
√
r
.

Since the condition N < 2C + 1 is a strict inequality, the largest integer that satisfies it
can be found by subtracting one and taking the ceiling. This yields the final result (in
nondimensional form):

Ns =

 min
(⌊

2
m
√
r

+ 1
⌋
, d2e′0(ss)e

)
if r < 9

16⌊
2

m
√
r

+ 1
⌋

if r ≥ 9
16

Proposition A.6. A symmetric BCC star is always unstable when N ≥ N+
u , for N+

u given
by Equation 3.4.

Proof. The symmetric BCC star lies on the line d = N−1
N
σ at equilibrium. Then an equilib-

rium is guaranteed to be unstable as long as this line only crosses the nullcline for σ < ρ,
which implies N−1

N
ρ > d0(ρ). In dimensionless form, this yields the constraint: N−1

N
> 1

m
√
r
.

32The values s = 5±
√
9−16r
8 are the two locations at which saddle-node bifurcations would appear if N

were continuous.
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Therefore, we have:

N

(
1− 1

m
√
r

)
> 1

If m
√
r ≤ 1, there is no finite integer for N which satisfies this inequality, which means that

all symmetric BCC stars are at least marginally stable. For m
√
r > 1, we can solve the

inequality to get N > m
√
r

m
√
r−1

. This yields the result:

N+
u =

{ ⌊
m
√
r

m
√
r−1

+ 1
⌋

if m
√
r > 1

∞ if m
√
r ≤ 1

Proposition A.7. H is spanned by symmetric zero-sum 3-cycles. For a complete BCC, the
basis of H is given by a subset of

(
N−1

2

)
of these

(
N
3

)
symmetric zero-sum 3-cycles.

Proof. We start by finding a basis for the hidden space of a complete BCC. Following the
form of Proposition 3.2, we use the same ordering for m and n and then write the reduced
row echelon form of TN+1 (rref TN+1) in terms of rref TN (for N ≥ 2):

rref TN+1 =
(
X Y Z

)

X =

(
rref TN

0N+1,u
N

)
, Y =

 0v
N
−1,N+1

IN+1

0TN+1

 , Z =



K

−1TN−1

IN−1

1TN−1

0TN−1


where K ∈ Rv

N
−1,N−1 is a sparse matrix with the following nonzero entries:

Kij =

{
1 if i =

(
j+1

2

)
−1 if i =

(
j+1

2

)
+ j

Removing the "free" columns from TN+1 and keeping only the "pivot" columns yields the
matrix Iv

N+1
−1. Furthermore, the free columns that depend on the new node (the columns

in Z) have only 6 nonzero entries. The base case of rref T2 has no free columns since
hidden modes only appear for N ≥ 3, so all free columns must only contain 6 nonzero
entries. Furthermore, examining the placement of the nonzero terms in the columns of Z
yields hidden mode vectors that correspond to symmetric zero-sum 3-cycles. Therefore, in
this ordering of variables, the basis of hidden mode vectors can be represented by linearly
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independent symmetric zero-sum 3-cycles. An easy way to pick
(
N−1

2

)
linearly independent

hidden modes is to pick one node as the primary node and then make groups of 3 by choosing
the other 2 from the set of N − 1 nodes that does not include the primary node.

The extension to any arbitrary graph is simple. Because the hidden space of the complete
BCC contains the hidden space of every other graph, it must be the case that symmetric
zero-sum 3-cycles span the hidden space of every graph. Whether or not a particular hc3

is realizable in the specific graph is a separate issue. In general, only a specific linear
combination of hc3 vectors will actually be realizable for a given graph. For example, a BCC
cycle of N nodes has one hidden mode: hcN .

Theorem A.8. The speed of convergence for any connected graph has an upper bound such
that λmin ≤ λ∗min.

Proof. If this were not the case, then we could have
∑

i λi > N for the N − 1 eigenvalues λi
in L̂. This is impossible since since tr L̂ = N by construction.

Theorem A.9. The robustness of convergence for any connected graph has a lower bound
such that H2 ≥ H∗2 .

Proof. The solution P to the Lyapunov equation L̄P + PL̄T = IN−1 is:

P =

∫ ∞
0

e−L̄te−L̄
T tdt

and H2
2 = trP . In [14], it is shown that:

tr
(
eAeA

T
)
≥

k∑
i=1

e2 Reλi

where λi is an eigenvalue of a generic k× k matrix A. Then, we can bound the square of H2

as [14]:

H2
2 ≥

∫ ∞
0

N−1∑
i=1

e−2 Reλitdt =
N−1∑
i=1

1

2 Reλi

where λi now represents an eigenvalue of L̄. The minimum of the right hand side of this
equation can easily be found using standard methods of constrained optimization (with the
constraint that tr L̄ = N). Namely, we can recast the problem into the following:

min
xi∈(0,∞)

∑
i

1

xi
subject to

∑
i

xi = 1
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Rather than use a straightforward but arduous method such as using a Lagrange multiplier
to find the critical point, we recognize that the problem does not change if we exchange any
two of the variables xi and xj. Therefore, the critical point must lie at the point of symmetry
in which all xi are equal. Inspection of the objective function shows that it is decreasing in
the parameters and blows up as xi → 0. Then, the critical point must be a global minimum
over the constrained domain xi ∈ (0,∞)|

∑
i xi = 1. It is the point at which the constraint

hyperplane lies tangent to a level set of the objective function. Transforming back to the
original parameters, we have λi = N

N−1
, which yields:

H2
2 ≥

N−1∑
i=1

N − 1

2N
=

(N − 1)2

2N
=

N−1∑
i=1

λ∗min = (H∗2 )2

Then we must have H2 ≥ H∗2 .
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B Jacobians for Linearized Network Dynamics

The Jacobian matrices for linearized dynamics are shown below. The vectors are ordered as
follows: m = (a12, a13, a21, a23, a31, a32, a33) and n = (dout1 , dout2 , dout3 , σ12, σ13, σ23, σ33).

∂f(m)

∂m
= (Q|R)

Q =



B′′(σ12)− 2µ −2(N − 2)µ B′′(σ12)

−2µ B′′(σ13)− 2µ(N − 2) 0

B′′(σ12) 0 B′′(σ12)− 2µ

0 0 −2µ

0 B′′(σ13) 0

02,3



R =



0 0 0 0

0 B′′(σ13) 0 0

−2(N − 2)µ 0 0 0

B′′(σ23)− 2(N − 2)µ 0 B′′(σ23) 0

0 B′′(σ13)− 2µ −2µ −2(N − 2)µ

B′′(σ23) −2µ B′′(σ23)− 2µ −2(N − 3)µ

0 −2µ −2µ 2B′′(σ33)− 2(N − 3)µ


∂Tf(n)

∂n
= (S|T )

S =


−2(N − 1)µI3

−2µ −2µ 0

−2µ 0 −2µ

0 −2µ −2µ

0 0 −4µ



T =


B′′(σ12) (N − 2)B′′(σ13) 0 0

B′′(σ12) 0 (N − 2)B′′(σ23) 0

0 B′′(σ13) B′′(σ23) (N − 3)B′′(σ33)

2 (B′′(σ12), B′′(σ13), B′′(σ23), B′′(σ33)) I4
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