Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation

Matthew O'Kelly*, Aman Sinha*, Hongseok Namkoong*, John Duchi, & Russ Tedrake mokelly@seas.upenn.edu, {amans, hnamk, jduchi}@stanford.edu, russt@mit.edu

Introduction

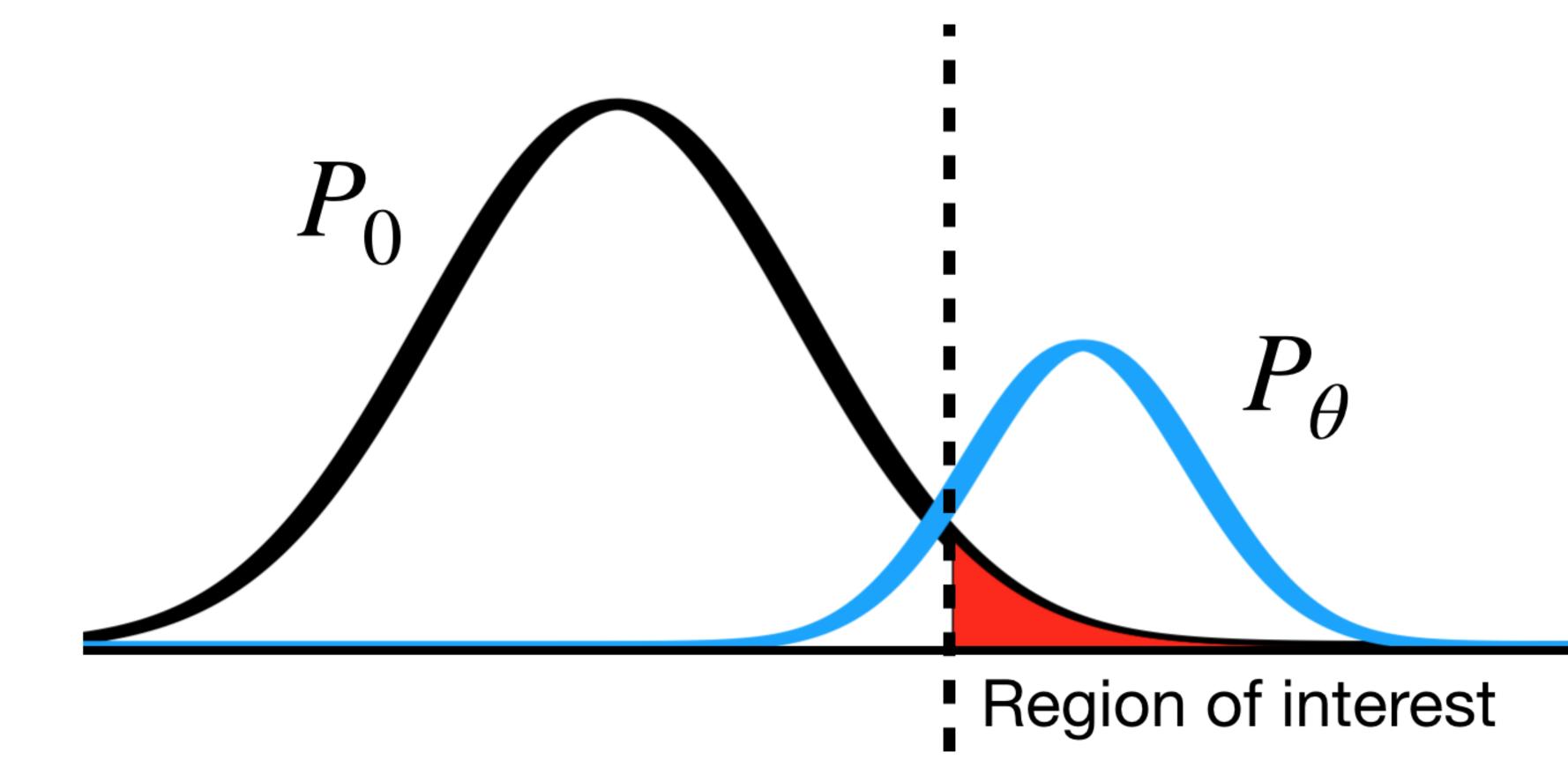
- **Real-world testing** of autonomous vehicles (AVs) is expensive and dangerous
- Formal verification of AV "correctness" is intractable and subjective
- We consider a risk-based framework: we evaluate the probability of an accident under a distribution of standard traffic behavior
- Estimate generative models of traffic behavior from data via imitation learning
- Use rare-event simulation techniques to efficiently find probability
- Our system achieves 10-300Pimes speedup over real-world testing (P = # of processors)

Rare-event simulation

- Given: continuous measure of safety $f : \mathcal{X} \to \mathbb{R}$, threshold level γ , and distribution P_0 of traffic behavior
- Goal: Evaluate probability of bad events $p_{\gamma} := \mathbb{P}_0(f(X) \leq \gamma)$
- Monte Carlo sampling is too slow (relative error of estimate $\propto \sqrt{1/p_{\gamma}}$)

Cross-entropy method

- Adaptive importance sampling technique that iteratively tilts sampling distribution P_{θ} to estimate $\widehat{p}_{N,\gamma} := \frac{1}{N} \sum_{i=1}^{N} \frac{p_0(X_i)}{p_{\theta}(X_i)} \mathbf{1} \{ f(X_i) \leq \gamma \}$
- Intuitively makes bad events more frequent. Iteratively tries to find $\theta^{\star} \in$ $\operatorname{argmin}_{\theta \in \Theta} D_{\mathrm{kl}}(P^* \| P_{\theta})$, where $p^* \propto \mathbf{1} \{ f(X_i) \leq \gamma \} p_0$
- Iterations are convex optimization problems for exponential families $\{P_{\theta}\}$



University of Pennsylvania, Stanford University, MIT

Data-driven generative models

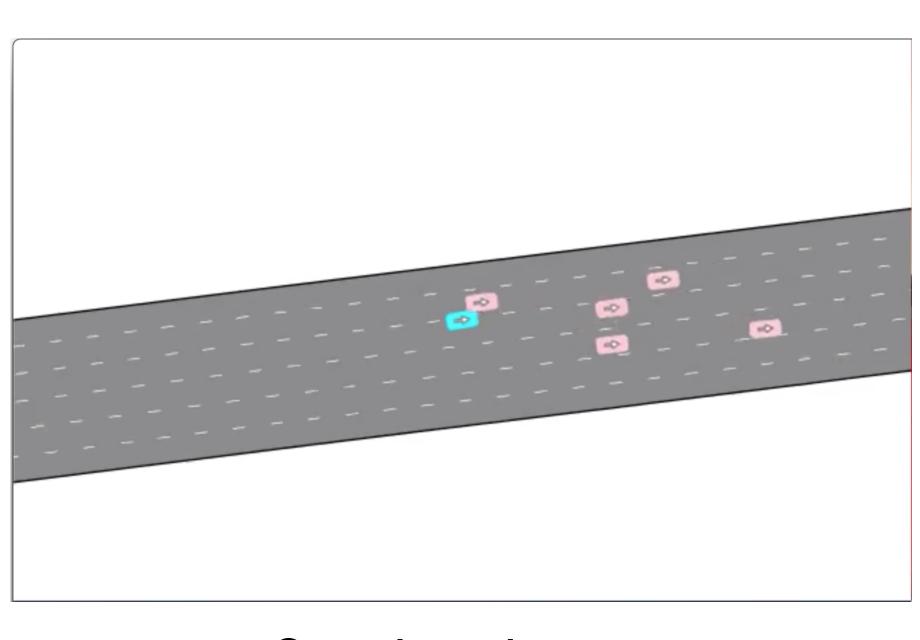
- Use data of real highway traffic to build behavior of traffic cars P_0 [1]
- Employ generative adversarial imitation learning [number]
- Model-based variant [2] allows fully differentiable training
- Use parametric bootstrap of many GAIL agents to build P_0

Generator

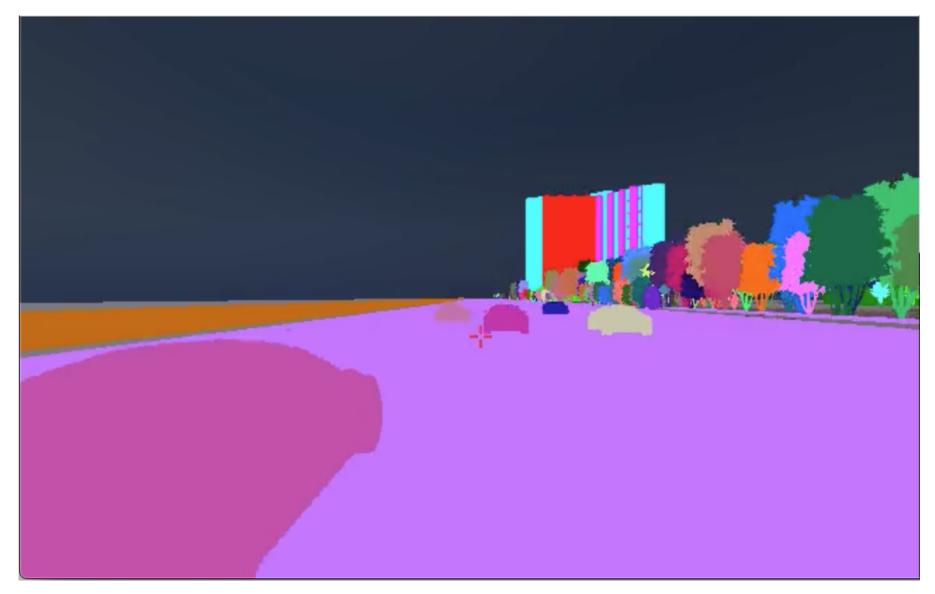
$G_{\theta}(s)$ Real data

Simulation stack

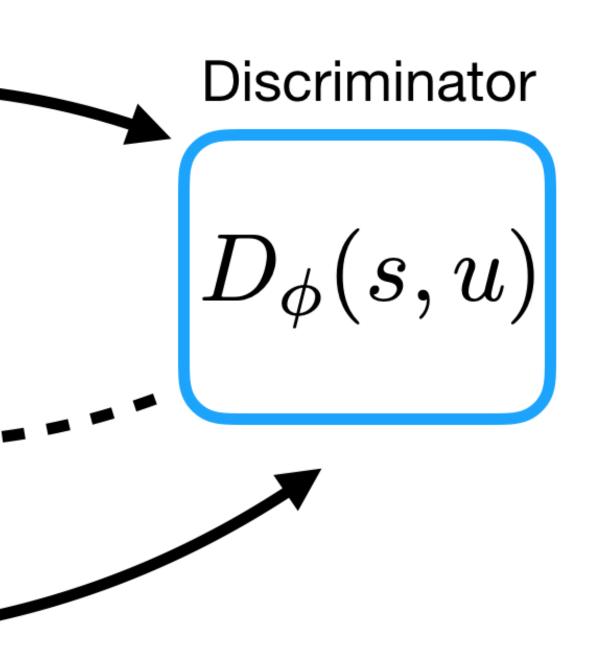
- Simulate ego-agent (AV algorithm to be tested) amongst traffic cars from P_0
- Modular and fully distributed architecture: separate physics and perception (Unreal) engines with communication between processors via ZMQ



Overhead view



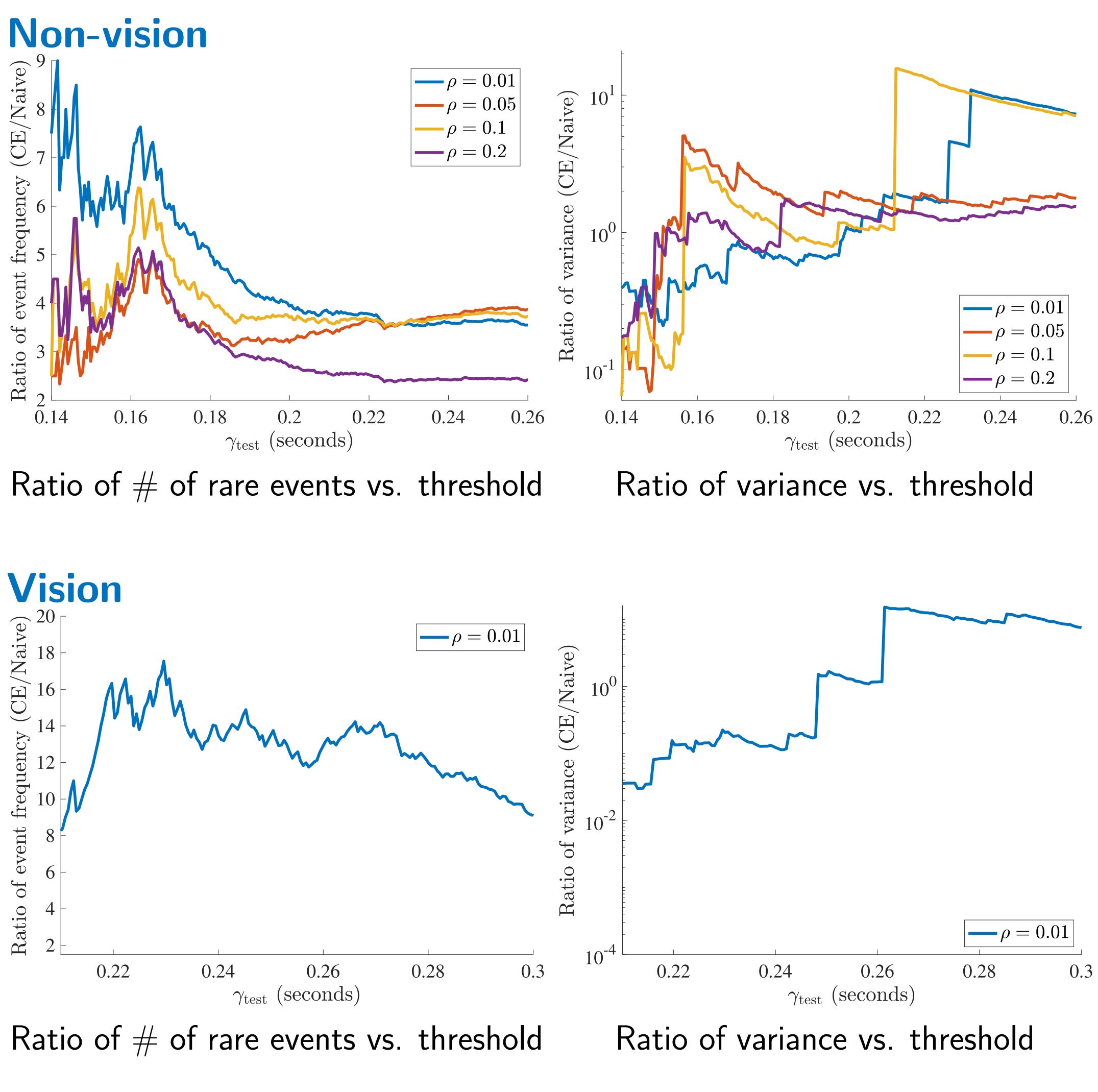
Dashcam segmentation

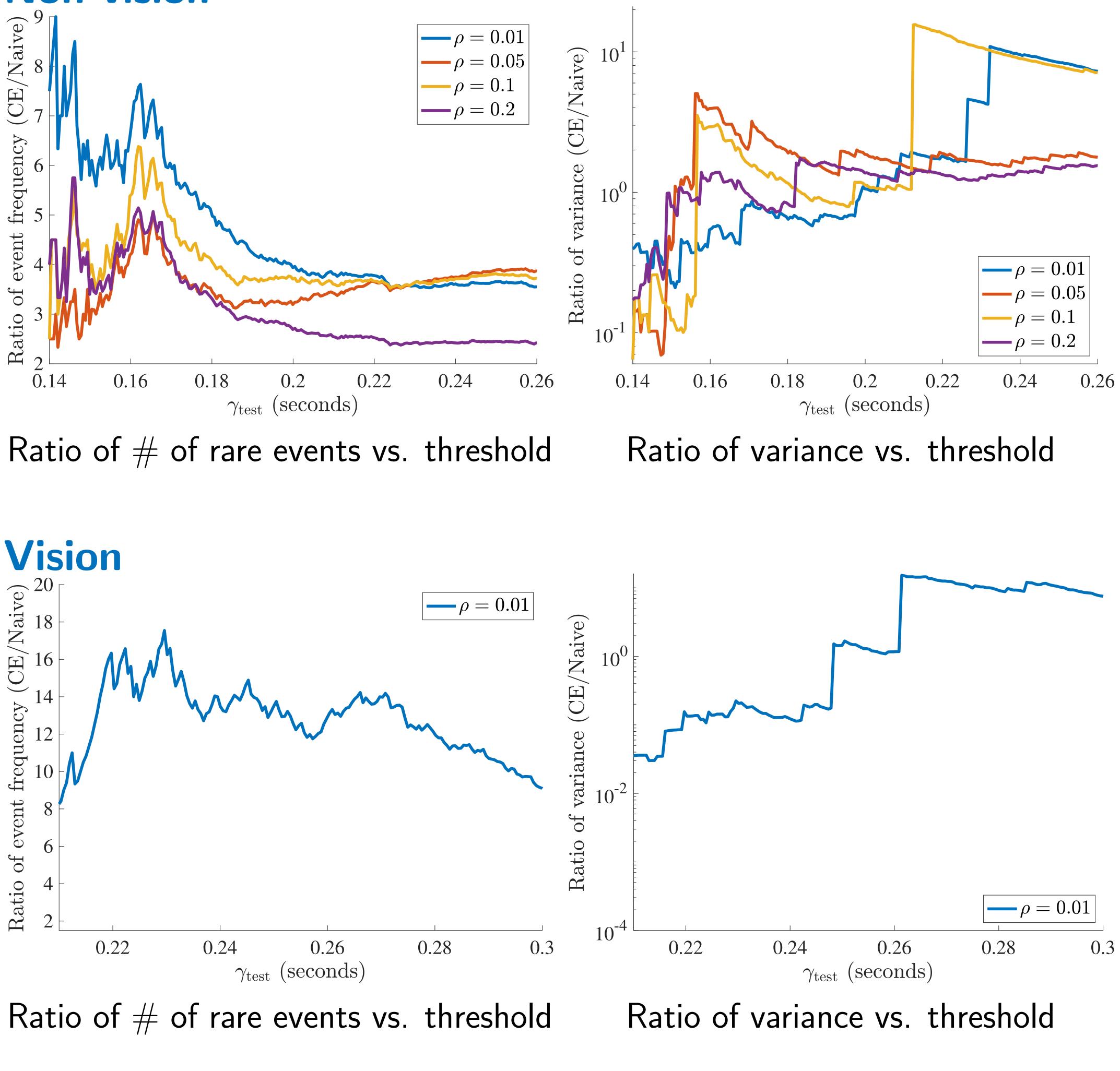


Dashcam RGB

Experiments

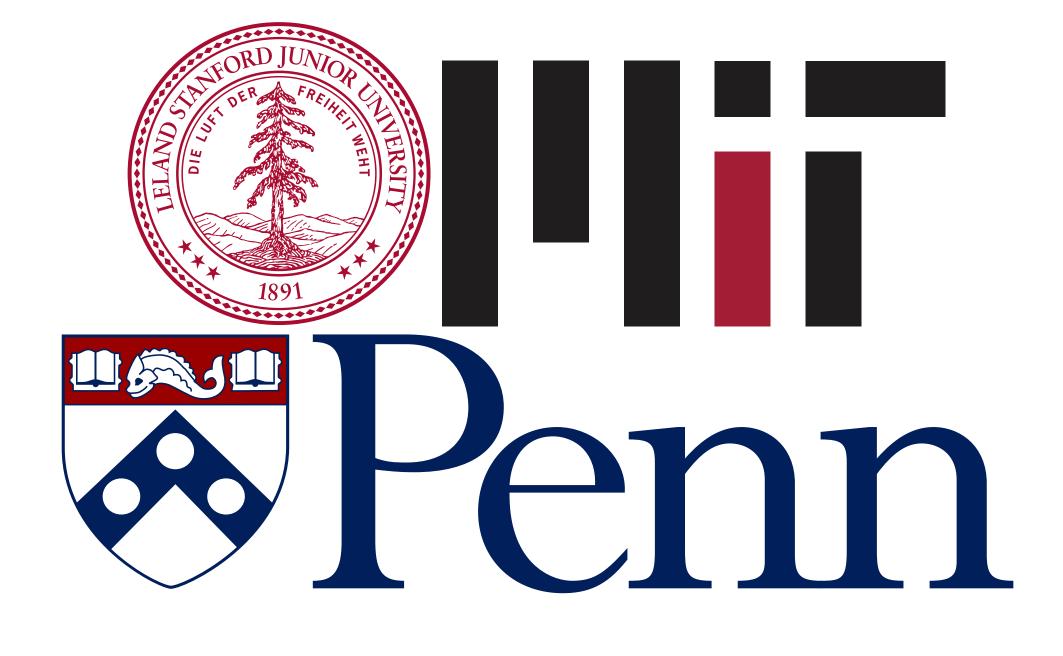
- Multi-agent highway scenario
- Test framework with both non-vision and vision-based ego policies
- Search over vehicle poses and behaviors of environment agents (i.e. weights of GAIL generator networks)
- non-vision policy





pages 390399, 2017.

Dashcam LIDAR



• Tune hyperparameter ρ (controls aggressiveness of cross-entropy method) on

[1] US. Dept. of Transportation FHWA. Ngsim next generation simulation, 2008.

[2] N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial imitation learning. ICML,

Link to code: https://github.com/travelbureau/RareSim