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Introduction

e Real-world testing of autonomous vehicles (AVs) is expensive and dangerous
e Formal verification of AV “correctness’ is intractable and subjective

e \We consider a risk-based framework: we evaluate the probability of an
accident under a distribution of standard traffic behavior

e Estimate generative models of traffic behavior from data via imitation learn-
Ing

e Use rare-event simulation techniques to efficiently find probability

e Our system achieves 10-300P x speedup over real-world testing (P = # of

processors)

Rare-event simulation

e Given: continuous measure of safety f : X — IR, threshold level ~, and
distribution F, of tratfic behavior

o Goal: Evaluate probability of bad events p., := Py(f(X) < v)

e Monte Carlo sampling is too slow (relative error of estimate o +/1/p, )

Cross-entropy method

e Adaptive importance sampling technique that iteratively tilts sampling distri-

bution Py to estimate py ~ = % Z.]il gggfgl {F(X;) <~}

e Intuitively makes bad events more frequent. Iteratively tries to find 6* &
argming.g Dy (P Py), where p* oc 1{f(X;) < v} po

e |terations are convex optimization problems for exponential families { Py}

' Region of interest

Data-driven generative models

e Use data of real highway traffic to build behavior of traffic cars F) [1]
e Employ generative adversarial imitation learning [number]
e Model-based variant (2] allows fully differentiable training

e Use parametric bootstrap of many GAIL agents to build £,

(Generator

— Discriminator

Real data /

Simulation stack

e Simulate ego-agent (AV algorithm to be tested) amongst traffic cars from F,

e Modular and fully distributed architecture: separate physics and perception

(Unreal) engines with communication between processors via ZMQ
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Experiments

e Multi-agent highway scenario
e [est framework with both non-vision and vision-based ego policies

e Search over vehicle poses and behaviors of environment agents (i.e. weights
of GAIL generator networks)

e Tune hyperparameter p (controls aggressiveness of cross-entropy method) on
non-vision policy

Non-vision
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Link to code: https://github.com /travelbureau/RareSim



